References

  1. Helander, H.F. and Fändriks, L. (2014) Surface area of the digestive tract – revisited. Scand. J. Gastroenterol. 49:681-689
  2. Wu, X. and Brewer, G. (2012) The regulation of mRNA stability in mammalian cells: 2.0. Gene 500:10-21
  3. Lee, J.H. et al. (2001) Crystal structure of rabbit phosphoglucose isomerase complexed with its substrate D-fructose 6-phosphate. Biochemistry 40:7799-7805
  4. Larion, M. and Miller, B.G. (2012) Homotropic allosteric regulation in monomeric mammalian glucokinase. Arch. Biochem. Biophys. 519:103-111
  5. Meglasson, M.D. and Matschinsky, F.M. (1983) Discrimination of glucose anomers by glucokinase from liver and transplantable insulinoma. J. Biol. Chem. 258:6705-6708
  6. Raggi, F. and Kronfeld, D.S. (1966) Higher glucose affinity of hexokinase in sheep brain than in rat brain. Nature 209:1353-1354
  7. Zhao, F. and Keating, A.F. (2007) Functional properties and genomics of glucose transporters. Curr. Genomics 8:113-128
  8. Bode, J.C. et al. (1973) Depletion of liver adenosine phosphates and metabolic effects of intravenous infusion of fructose or sorbitol in man and in the rat. Eur. J. Clin. Invest. 3:436-441
  9. Ning, C. et al. (2000) Galactose metabolism by the mouse with galactose-1-phosphate uridyltransferase deficiency. Pediatr. Res. 48:211-217
  10. Panis, B. et al. (2006) Untreated classical galactosemia patient with mild phenotype. Mol. Genet. Metab. 89:277-279
  11. Leslie, N.D. (2003) Insights into the pathogenesis of galactosemia. Annu. Rev. Nutr. 23:59-80
  12. Berry, G.T. (2011) Is prenatal myo-inositol deficiency a mechanism of CNS injury in galactosemia?. J. Inherit. Metab. Dis. 34:345-355
  13. Holton, J.B. et al. (1981) Galactosaemia: a new severe variant due to uridine diphosphate galactose-4-epimerase deficiency. Arch. Dis. Child. 56:885-887
  14. Morgunov, I. and Srere, P.A. (1998) Interaction between citrate synthase and malate dehydrogenase. Substrate channeling of oxaloacetate. J. Biol. Chem. 273:29540-29544
  15. Graham, J.W.A. et al. (2007) Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling. Plant Cell 19:3723-3738
  16. Shen, L.C. and Atkinson, D.E. (1970) Regulation of pyruvate dehydrogenase from Escherichia coli. Interactions of adenylate energy charge and other regulatory parameters. J. Biol. Chem. 245:5974-8
  17. Schrenk, D.F. and Bisswanger, H. (1984) Measurements of electron spin resonance with the pyruvate dehydrogenase complex from Escherichia coli. Studies on the allosteric binding site of acetyl-coenzyme A. Eur. J. Biochem. 143:561-6
  18. Karpusas, M. et al. (1990) Proposed mechanism for the condensation reaction of citrate synthase: 1.9-A structure of the ternary complex with oxaloacetate and carboxymethyl coenzyme A. Biochemistry 29:2213-2219
  19. Yagi, T. and Matsuno-Yagi, A. (2003) The proton-translocating NADH-quinone oxidoreductase in the respiratory chain: the secret unlocked. Biochemistry 42:2266-2274
  20. Liu, X. et al. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147-157
  21. Colell, A. et al. (2009) Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ. 16:1573-1581
  22. Rastogi, V.K. and Girvin, M.E. (1999) Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402:263-268
  23. Passarella, S. et al. (1984) Oxaloacetate uptake into rat brain mitochondria and reconstruction of the malate/oxaloacetate shuttle. Biochem. Biophys. Res. Commun. 119:1039-1046
  24. Atlante, A. et al. (2006) Mitochondria from the left heart ventricles of both normotensive and spontaneously hypertensive rats oxidize externally added NADH mostly via a novel malate/oxaloacetate shuttle as reconstructed in vitro. Int. J. Mol. Med. 18:177-186
  25. Safer, B. (1975) The Metabolic Significance of the Malate-Aspartate Cycle in Heart. Circ. Res. 37:527-533
  26. Barron, J.T. et al. (1998) Malate-aspartate shuttle, cytoplasmic NADH redox potential, and energetics in vascular smooth muscle. J. Mol. Cell. Cardiol. 30:1571-1579
  27. Divakaruni, A.S. and Brand, M.D. (2011) The regulation and physiology of mitochondrial proton leak. Physiology Bethesda 26:192-205
  28. Sazanov, L.A. and Jackson, J.B. (1994) Proton-translocating transhydrogenase and NAD- and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria. FEBS Lett. 344:109-116
  29. Chou, C. et al. (2009) Crystal structure of biotin carboxylase in complex with substrates and implications for its catalytic mechanism. J. Biol. Chem. 284:11690-11697
  30. Halperin, M.L. et al. (1971) The inhibition by methylmalonic acid of malate transport by the dicarboxylate carrier in rat liver mitochondria. A possible explanation for hypoglycemia in methylmalonic aciduria. J. Clin. Invest. 50:2276-2282
  31. Burchell, A. (1996) Endoplasmic reticulum phosphate transport. Kidney Int. 49:953-958
  32. Goldsmith, E. et al. (1982) Structure of maltoheptaose by difference Fourier methods and a model for glycogen. J. Mol. Biol. 156:411-427
  33. Roach, P.J. et al. (2012) Glycogen and its metabolism: some new developments and old themes. Biochem. J. 441:763-787
  34. Sheng, F. et al. (2009) The crystal structures of the open and catalytically competent closed conformation of Escherichia coli glycogen synthase. J. Biol. Chem. 284:17796-17807
  35. Johnson, L.N. et al. (1992) Catalytic mechanism of glycogen phosphorylase. Faraday Discuss. 93:131-142
  36. Shieh, J. et al. (2003) A glucose-6-phosphate hydrolase, widely expressed outside the liver, can explain age-dependent resolution of hypoglycemia in glycogen storage disease type Ia. J. Biol. Chem. 278:47098-47103
  37. Jones, J.P. et al. (1994) Correlation between fructose 2,6-bisphosphate and lactate production in skeletal muscle. J. Appl. Physiol. 76:2169-76
  38. Winder, W.W. and Duan, C. (1992) Control of fructose 2,6-diphosphate in muscle of exercising fasted rats. Am. J. Physiol. 262:E919-24
  39. Winder, W.W. et al. (1994) Muscle fructose-2,6-bisphosphate and glucose-1,6-bisphosphate during insulin-induced hypoglycemia. J. Appl. Physiol. 76:853-8
  40. Cori, C.F. and Cori, G.T. (1929) Glycogen formation in the liver from D- and L-lactic acid. J. Biol. Chem. 81:389-403
  41. Greene, H.L. et al. (1978) ATP depletion, a possible role in the pathogenesis of hyperuricemia in glycogen storage disease type I. J. Clin. Invest. 62:321-328
  42. Burwinkel, B. et al. (1997) Autosomal glycogenosis of liver and muscle due to phosphorylase kinase deficiency is caused by mutations in the phosphorylase kinase β subunit (PHKB). Hum. Mol. Genet. 6:1109-1115
  43. Wagenmakers, A.J. et al. (1990) Metabolism of branched-chain amino acids and ammonia during exercise: clues from McArdle's disease. Int. J. Sports Med. 11 Suppl 2:S101-S113
  44. Worby, C.A. et al. (2006) Laforin, a dual specificity phosphatase that dephosphorylates complex carbohydrates. J. Biol. Chem. 281:30412-30418
  45. Racker, E. and Schroeder, E. (1957) Formation and utilization of octulose-8-phosphate by transaldolase and transketolase. Arch. Biochem. Biophys. 66:241-243
  46. Veech, R.L. et al. (1969) The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem. J. 115:609-619
  47. Suagee, J.K. et al. (2010) De novo fatty acid synthesis and NADPH generation in equine adipose and liver tissue. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 155:322-326
  48. Lyon, M.F. (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372-373
  49. Beutler, E. et al. (1962) The normal human female as a mosaic of X-chromosome activity: studies using the gene for G-6-PD-deficiency as a marker. Proc. Natl. Acad. Sci. U. S. A. 48:9-16
  50. Chevion, M. et al. (1982) The chemistry of favism-inducing compounds. The properties of isouramil and divicine and their reaction with glutathione. Eur. J. Biochem. 127:405-409
  51. Carriere, F. et al. (1993) Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology 105:876-888
  52. Gargouri, Y. et al. (1989) Gastric lipases: biochemical and physiological studies. Biochim. Biophys. Acta 1006:255-271
  53. Roulet, M. et al. (1980) Gastric emptying and lingual lipase activity in cystic fibrosis. Pediatr. Res. 14:1360-1362
  54. van Stekelenburg, G.J. and Koorevaar, G. (1972) Evidence for the existence of mammalian acetoacetate decarboxylase: with special reference to human blood serum. Clin. Chim. Acta 39:191-199
  55. Koorevaar, G. and van Stekelenburg, G.J. (1976) Mammalian acetoacetate decarboxylase activity. Its distribution in subfractions of human albumin and occurrence in various tissues of the rat. Clin. Chim. Acta 71:173-183
  56. Casazza, J.P. et al. (1984) The metabolism of acetone in rat. J. Biol. Chem. 259:231-236
  57. Reichard, G.A.J. et al. (1979) Plasma acetone metabolism in the fasting human. J. Clin. Invest. 63:619-626
  58. Sulway, M.J. and Malins, J.M. (1970) Acetone in diabetic ketoacidosis. Lancet 2:736-740
  59. Vining, E.P.G. (2002) The ketogenic diet. Adv. Exp. Med. Biol. 497:225-231
  60. Gasior, M. et al. (2007) The anticonvulsant activity of acetone, the major ketone body in the ketogenic diet, is not dependent on its metabolites acetol, 1,2-propanediol, methylglyoxal, or pyruvic acid. Epilepsia 48:793-800
  61. Palmer, M. (2013) Combination treatment of epilepsy with ketogenic diet and concurrent pharmacological inhibition of cytochrome P450 2E1. Med. Hypotheses 80:481-485
  62. Stern, J.R. (1971) A role of acetoacetyl-CoA synthetase in acetoacetate utilization by rat liver cell fractions. Biochem. Biophys. Res. Commun. 44:1001-1007
  63. Endemann, G. et al. (1982) Lipogenesis from ketone bodies in the isolated perfused rat liver. Evidence for the cytosolic activation of acetoacetate. J. Biol. Chem. 257:3434-3440
  64. Buckley, B.M. and Williamson, D.H. (1975) Acetoacetyl-CoA synthetase; a lipogenic enzyme in rat tissues. FEBS Lett. 60:7-10
  65. Puig, T. et al. (2009) Novel Inhibitors of Fatty Acid Synthase with Anticancer Activity. Clin. Cancer Res. 15:7608-7615
  66. Sakakura, Y. et al. (2001) Sterol regulatory element-binding proteins induce an entire pathway of cholesterol synthesis. Biochem. Biophys. Res. Commun. 286:176-183
  67. Goldstein, J.L. et al. (2006) Protein sensors for membrane sterols. Cell 124:35-46
  68. Dawson, R.J.P. and Locher, K.P. (2007) Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett. 581:935-938
  69. Aller, S.G. et al. (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718-1722
  70. Steinberg, D. (2002) Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat. Med. 8:1211-1217
  71. Rajamäki, K. et al. (2010) Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS One 5:e11765
  72. Martinon, F. et al. (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237-241
  73. Wang, Z. et al. (2007) Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat. Med. 13:1176-1184
  74. Bhakdi, S. et al. (2004) Beyond cholesterol: the enigma of atherosclerosis revisited. Thromb. Haemost. 91:639-645
  75. Adams, D. (2005) The Hitchhiker's Guide to the Galaxy (Pan Macmillan).
  76. Bamm, V.V. et al. (2004) Haptoglobin phenotypes differ in their ability to inhibit heme transfer from hemoglobin to LDL. Biochemistry 43:3899-3906
  77. Delanghe, J. et al. (1999) Haptoglobin polymorphism and peripheral arterial occlusive disease. Atherosclerosis 145:287-292
  78. Goldberg, A.S. and Hegele, R.A. (2012) Cholesteryl ester transfer protein inhibitors for dyslipidemia: focus on dalcetrapib. Drug Des. Devel. Ther. 6:251-259
  79. Lütjohann, D. et al. (2008) Long-term efficacy and safety of ezetimibe 10 mg in patients with homozygous sitosterolemia: a 2-year, open-label extension study. Int. J. Clin. Pract. 62:1499-1510
  80. Tsubakio-Yamamoto, K. et al. (2010) Current therapy for patients with sitosterolemia–effect of ezetimibe on plant sterol metabolism. J. Atheroscler. Thromb. 17:891-900
  81. Brosnan, J.T. (2000) Glutamate, at the interface between amino acid and carbohydrate metabolism. J. Nutr. 130:988S-990S
  82. Yamada, T. et al. (2003) Crystal structure of serine dehydratase from rat liver. Biochemistry 42:12854-12865
  83. Loo, Y.H. (1974) Serotonin deficiency in experimental hyperphenylalaninemia. J. Neurochem. 23:139-147
  84. Woolf, L.I. (1986) The heterozygote advantage in phenylketonuria. Am. J. Hum. Genet. 38:773-775
  85. Sanger, F. (1988) Sequences, sequences, and sequences. Annu. Rev. Biochem. 57:1-28
  86. Wahren, J. et al. (2012) The clinical potential of C-peptide replacement in type 1 diabetes. Diabetes 61:761-772
  87. Vayssière, B.M. et al. (1997) Synthetic glucocorticoids that dissociate transactivation and AP-1 transrepression exhibit antiinflammatory activity in vivo. Mol. Endocrinol. 11:1245-1255
  88. King, E.M. et al. (2013) Glucocorticoid repression of inflammatory gene expression shows differential responsiveness by transactivation- and transrepression-dependent mechanisms. PLoS One 8:e53936
  89. Russell, S.T. et al. (2009) Mechanism of induction of muscle protein loss by hyperglycaemia. Exp. Cell Res. 315:16-25
  90. Nylen, K. et al. (2009) The ketogenic diet: proposed mechanisms of action. Neurotherapeutics 6:402-405
  91. Postolache, V. et al. (1969) Die Einwirkung des Acetons auf die Barbiturat-Narkose [The effect of acetone on barbiturate anesthesia]. Arch. Toxikol. 25:333-337
  92. MacDonald, K.S. et al. (2000) Influence of HLA supertypes on susceptibility and resistance to human immunodeficiency virus type 1 infection. J. Infect. Dis. 181:1581-1589
  93. Schemmel, K.E. et al. (2010) Aldose reductase inhibitors in the treatment of diabetic peripheral neuropathy: a review. J. Diabetes Complications 24:354-360
  94. Colca, J.R. et al. (2013) Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT) –relationship to newly identified mitochondrial pyruvate carrier proteins. PLoS One 8:e61551
  95. Divakaruni, A.S. et al. (2013) Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc. Natl. Acad. Sci. U. S. A. 110:5422-5427
  96. Miller, R.A. et al. (2013) Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494:256-260
  97. Owen, M.R. et al. (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348 Pt 3:607-614
  98. Hawley, S.A. et al. (2002) The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51:2420-2425
  99. Foretz, M. et al. (2010) Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120:2355-2369
  100. Fowler, B. (2001) The folate cycle and disease in humans. Kidney Int. Suppl. 78:S221-S229
  101. Schirch, V. and Szebenyi, D.M. (2005) Serine hydroxymethyltransferase revisited. Curr. Opin. Chem. Biol. 9:482-487
  102. Weir, D.G. and Scott, J.M. (1995) The biochemical basis of the neuropathy in cobalamin deficiency. Baillieres Clin. Haematol. 8:479-497
  103. van der Westhuyzen, J. et al. (1983) Effect of a vitamin B-12-deficient diet on lipid and fatty acid composition of spinal cord myelin in the fruit bat. J. Nutr. 113:531-537
  104. Aufreiter, S. et al. (2009) Folate is absorbed across the colon of adults: evidence from cecal infusion of 13C-labeled [6S]-5-formyltetrahydrofolic acid. Am. J. Clin. Nutr. 90:116-123
  105. Hamid, A. et al. (2009) New perspectives on folate transport in relation to alcoholism-induced folate malabsorption–association with epigenome stability and cancer development. FEBS J. 276:2175-2191
  106. McMartin, K.E. and Collins, T.D. (1983) Relationship of alcohol metabolism to folate deficiency produced by ethanol in the rat. Pharmacol. Biochem. Behav. 18 Suppl 1:257-262
  107. Fernando, O.V. and Grimsley, E.W. (1998) Prevalence of folate deficiency and macrocytosis in patients with and without alcohol-related illness. South. Med. J. 91:721-725
  108. Chan, A. et al. (2010) Cobinamide is superior to other treatments in a mouse model of cyanide poisoning. Clin. Toxicol. Phila. 48:709-717
  109. Fujii, K. et al. (1982) Accumulation of 5-methyltetrahydrofolate in cobalamin-deficient L1210 mouse leukemia cells. J. Biol. Chem. 257:2144-2146
  110. Li, S. et al. (2007) Octameric structure of the human bifunctional enzyme PAICS in purine biosynthesis. J. Mol. Biol. 366:1603-1614
  111. Van den Berghe, G. et al. (1992) The purine nucleotide cycle and its molecular defects. Prog. Neurobiol. 39:547-561
  112. Sabina, R.L. et al. (1984) Myoadenylate deaminase deficiency. Functional and metabolic abnormalities associated with disruption of the purine nucleotide cycle. J. Clin. Invest. 73:720-30
  113. Zöllner, N. and Gröbner, W. (1977) Dietary feedback regulation of purine and pyrimidine biosynthesis in man. Ciba Found. Symp. -:165-178
  114. Löffler, W. et al. (1982) Influence of dietary purines on pool size, turnover, and excretion of uric acid during balance conditions. Isotope studies using 15N-uric acid. Res. Exp. Med. Berl 181:113-123
  115. Enomoto, A. et al. (2002) Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417:447-452
  116. Feig, D.I. et al. (2004) Hypothesis: Uric acid, nephron number, and the pathogenesis of essential hypertension. Kidney Int. 66:281-287
  117. Ramazzina, I. et al. (2006) Completing the uric acid degradation pathway through phylogenetic comparison of whole genomes. Nat. Chem. Biol. 2:144-148
  118. Nyhan, W.L. (2000) Dopamine function in Lesch-Nyhan disease. Environ. Health Perspect. 108 Suppl 3:409-411
  119. Breese, G.R. et al. (1990) A dopamine deficiency model of Lesch-Nyhan disease–the neonatal-6-OHDA-lesioned rat. Brain Res. Bull. 25:477-484
  120. Choi, H.K. et al. (2004) Alcohol intake and risk of incident gout in men: a prospective study. Lancet 363:1277-1281
  121. Kishibe, M. et al. (2010) Chronic tophaceous gout secondary to self-induced vomiting in anorexia nervosa. J. Dermatol. 37:578-580
  122. Mehlhaff, D.L. and Stein, D.S. (1996) Gout secondary to ritonavir and didanosine. AIDS 10:1744
  123. Heuckenkamp, P.U. and Zöllner, N. (1971) Fructose-induced hyperuricaemia. Lancet 1:808-809
  124. Choi, H.K. and Curhan, G. (2008) Soft drinks, fructose consumption, and the risk of gout in men: prospective cohort study. BMJ 336:309-312
  125. Oberhaensli, R.D. et al. (1987) Study of hereditary fructose intolerance by use of 31P magnetic resonance spectroscopy. Lancet 2:931-934
  126. Richette, P. et al. (2007) Rasburicase for tophaceous gout not treatable with allopurinol: an exploratory study. J. Rheumatol. 34:2093-2098
  127. Boldyrev, A.A. et al. (2013) Physiology and pathophysiology of carnosine. Physiol. Rev. 93:1803-1845
  128. Tamba, M. and Torreggiani, A. (1998) A pulse radiolysis study of carnosine in aqueous solution. Int. J. Radiat. Biol. 74:333-340
  129. Boldyrev, A.A. (2012) Carnosine: new concept for the function of an old molecule. Biochemistry Mosc 77:313-326
  130. Galmarini, C.M. et al. (2002) In vivo mechanisms of resistance to cytarabine in acute myeloid leukaemia. Br. J. Haematol. 117:860-868
  131. Cline, S.D. and Osheroff, N. (1999) Cytosine arabinoside lesions are position-specific topoisomerase II poisons and stimulate DNA cleavage mediated by the human type II enzymes. J. Biol. Chem. 274:29740-29743
  132. Cummings, T.F. (2004) The treatment of cyanide poisoning. Occup. Med. Lond 54:82-85
  133. Jaffe, E.K. (2004) The porphobilinogen synthase catalyzed reaction mechanism. Bioorg. Chem. 32:316-325
  134. Herrick, A.L. and McColl, K.E.L. (2005) Acute intermittent porphyria. Best Pract. Res. Clin. Gastroenterol. 19:235-249
  135. Phillips, J.D. et al. (2007) A porphomethene inhibitor of uroporphyrinogen decarboxylase causes porphyria cutanea tarda. Proc. Natl. Acad. Sci. U. S. A. 104:5079-5084
  136. Müller, W.E. and Snyder, S.H. (1977) δ-Aminolevulinic acid: influences on synaptic GABA receptor binding may explain CNS symptoms of porphyria. Ann. Neurol. 2:340-342
  137. McDonagh, A.F. (2010) Controversies in bilirubin biochemistry and their clinical relevance. Semin. Fetal Neonatal Med. 15:141-147
  138. Rose, J. and Vassar, R. (2015) Movement disorders due to bilirubin toxicity. Semin. Fetal Neonatal Med. 20:20-25
  139. Watchko, J.F. (2006) Kernicterus and the molecular mechanisms of bilirubin-induced CNS injury in newborns. Neuromolecular Med. 8:513-529
  140. Onishi, S. et al. (1986) Metabolism of bilirubin and its photoisomers in newborn infants during phototherapy. J. Biochem. 100:789-795
  141. Christensen, T. et al. (1994) Cells, bilirubin and light: formation of bilirubin photoproducts and cellular damage at defined wavelengths. Acta Paediatr. 83:7-12
  142. Job, H. et al. (1996) Improvements in long term phototherapy for patients with Crigler-Najjar syndrome type I. Phys. Med. Biol. 41:2549-2556
  143. Kappas, A. et al. (2001) A single dose of Sn-mesoporphyrin prevents development of severe hyperbilirubinemia in glucose-6-phosphate dehydrogenase-deficient newborns. Pediatrics 108:25-30
  144. Hazelton, G.A. and Lang, C.A. (1980) Glutathione contents of tissues in the aging mouse. Biochem. J. 188:25-30
  145. Takata, H. et al. (2013) Chromatin compaction protects genomic DNA from radiation damage. PLoS One 8:e75622
  146. Valota, A. et al. (2003) Modelling study on the protective role of OH radical scavengers and DNA higher-order structures in induction of single- and double-strand break by gamma-radiation. Int. J. Radiat. Biol. 79:643-53
  147. Tajc, S.G. et al. (2004) Direct determination of thiol pKa by isothermal titration microcalorimetry. J. Am. Chem. Soc. 126:10508-9
  148. Salem, H. (2017) Oxidants, Antioxidants And Free Radicals (CRC Press).
  149. Winterbourn, C.C. (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4:278-86
  150. Halliwell, B. and Gutteridge, J. (2007) Free Radicals in Biology and Medicine (4th ed.) (Oxford University Press).
  151. Frey, R.S. et al. (2009) NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology. Antioxid. Redox Signal. 11:791-810
  152. Buettner, G.R. (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch. Biochem. Biophys. 300:535-43
  153. Bylund, J. et al. (2010) Intracellular generation of superoxide by the phagocyte NADPH oxidase: how, where, and what for?. Free Radic. Biol. Med. 49:1834-1845
  154. Bartsch, H. and Nair, J. (2006) Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch. Surg. 391:499-510
  155. Brinkmann, V. et al. (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532-5
  156. Turrens, J.F. et al. (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237:408-14
  157. Liochev, S.I. and Fridovich, I. (1994) The role of O2•– in the production of HO: in vitro and in vivo. Free Radic. Biol. Med. 16:29-33
  158. Krauss, S. et al. (2003) Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction. J. Clin. Invest. 112:1831-42
  159. Sonntag, C. (1987) The Chemical Basis of Radiation Biology (Taylor & Francis).
  160. Whiteman, M. and Halliwell, B. (1996) Protection against peroxynitrite-dependent tyrosine nitration and alpha 1-antiproteinase inactivation by ascorbic acid. A comparison with other biological antioxidants. Free Radic. Res. 25:275-83
  161. Gebicki, J.M. et al. (2010) Reduction of protein radicals by GSH and ascorbate: potential biological significance. Amino Acids 39:1131-7
  162. Domazou, A.S. et al. (2009) Efficient repair of protein radicals by ascorbate. Free Radic. Biol. Med. 46:1049-57
  163. Domazou, A.S. et al. (2012) Fast repair of protein radicals by urate. Free Radic. Biol. Med. 52:1929-36
  164. Spickett, C.M. (2013) The lipid peroxidation product 4-hydroxy-2-nonenal: Advances in chemistry and analysis. Redox Biol. 1:145-52
  165. Esterbauer, H. et al. (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11:81-128
  166. Kaneko, T. et al. (1987) Lethal effects of a linoleic acid hydroperoxide and its autoxidation products, unsaturated aliphatic aldehydes, on human diploid fibroblasts. Chem. Biol. Interact. 63:127-37
  167. Gautam, J. et al. (2018) 4-Hydroxynonenal-induced GPR109A (HCA2 receptor) activation elicits bipolar responses, Gαi-mediated anti-inflammatory effects and Gβγ-mediated cell death. Br. J. Pharmacol. 175:2581-2598
  168. Pryor, W.A. and Stanley, J.P. (1975) A suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids. Nonenzymatic production of prostaglandin endoperoxides during autoxidation. J. Org. Chem. 40:3615-7
  169. Lee, S.H. et al. (2005) 4-Hydroperoxy-2-nonenal-induced formation of 1,N2-etheno-2'-deoxyguanosine adducts. Chem. Res. Toxicol. 18:780-6
  170. Landi, L. et al. (1997) DT-Diaphorase maintains the reduced state of ubiquinones in lipid vesicles thereby promoting their antioxidant function. Free Radic. Biol. Med. 22:329-35
  171. Liu, J. et al. (1999) Metallothionein-I/II knockout mice are sensitive to acetaminophen-induced hepatotoxicity. J. Pharmacol. Exp. Ther. 289:580-6
  172. Santos, C.X. et al. (1999) Uric acid oxidation by peroxynitrite: multiple reactions, free radical formation, and amplification of lipid oxidation. Arch. Biochem. Biophys. 372:285-94
  173. Gutteridge, J.M. (1982) Free-radical damage to lipids, amino acids, carbohydrates and nucleic acids determined by thiobarbituric acid reactivity. Int. J. Biochem. 14:649-53
  174. Sinnhuber, R.O. et al. (1958) Characterization Of The Red Pigment Formed In The 2-Thiobarbituric Acid Determination Of Oxidative Rancidity. J. Food Sci. 23:626-634
  175. Jennings, W.G. et al. (1955) Studies on certain red pigments formed from 2-thiobarbituric acid. J. Food Sci. 20:13-22
  176. DeRosa, M.C. and Crutchley, R.J. (2002) Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 233-234:351-371
  177. Onyango, A.N. (2016) Endogenous Generation of Singlet Oxygen and Ozone in Human and Animal Tissues: Mechanisms, Biological Significance, and Influence of Dietary Components. Oxid. Med. Cell. Longev. 2016:2398573
  178. Su, P. et al. (2007) A valence bond study of the dioxygen molecule. J. Comput. Chem. 28:185-97
  179. Franck, B. et al. (1982) Über die Rolle von Singulett-Sauerstoff bei Porphyrie-Erkrankungen [On the role of singlet oxygen in porphyria diseases]. Naturwissenschaften 69:401-2
  180. Silva, J.N. et al. (2006) Photodynamic therapies: principles and present medical applications. Biomed. Mater. Eng. 16:S147-54
  181. Ding, A.H. and Chan, P.C. (1984) Singlet oxygen in copper-catalyzed lipid peroxidation in erythrocyte membranes. Lipids 19:278-84
  182. Goldstein, B.D. and Harber, L.C. (1972) Erythropoietic protoporphyria: lipid peroxidation and red cell membrane damage associated with photohemolysis. J. Clin. Invest. 51:892-902
  183. Afonso, S.G. et al. (1999) The photodynamic and non-photodynamic actions of porphyrins. Braz. J. Med. Biol. Res. 32:255-66
  184. Winterbourn, C.C. et al. (1991) Ferritin, lipid peroxidation and redox-cycling xenobiotics. Free Radic. Res. Commun. 12-13 Pt 1:107-14
  185. Vagace, J.M. et al. (2015) Clinical relevance of erythrocyte ferritin in microcytic anemias. Clin. Chim. Acta 442:1-5
  186. Palmiter, R.D. (1995) Constitutive expression of metallothionein-III (MT-III), but not MT-I, inhibits growth when cells become zinc deficient. Toxicol. Appl. Pharmacol. 135:139-46
  187. Hodgson, E.K. and Fridovich, I. (1975) The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry 14:5294-9
  188. Cao, Z. et al. (2007) Mitochondrial peroxiredoxins. Subcell. Biochem. 44:295-315
  189. Gourlay, L.J. et al. (2003) Structure-function analysis of recombinant substrate protein 22 kDa (SP-22). A mitochondrial 2-CYS peroxiredoxin organized as a decameric toroid. J. Biol. Chem. 278:32631-7
  190. May, J.M. (1998) Ascorbate function and metabolism in the human erythrocyte. Front. Biosci. 3:d1-10
  191. Lee, Y. et al. (2010) Mitochondrial GLUT10 facilitates dehydroascorbic acid import and protects cells against oxidative stress: mechanistic insight into arterial tortuosity syndrome. Hum. Mol. Genet. 19:3721-33
  192. Ames, B.N. et al. (1981) Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc. Natl. Acad. Sci. U. S. A. 78:6858-62
  193. Whiteman, M. et al. (2002) A reassessment of the peroxynitrite scavenging activity of uric acid. Ann. N. Y. Acad. Sci. 962:242-59
  194. Cutler, R.G. (1984) Urate and ascorbate: their possible roles as antioxidants in determining longevity of mammalian species. Arch. Gerontol. Geriatr. 3:321-48
  195. Iida, S. et al. (2017) Parabanic acid is the singlet oxygen specific oxidation product of uric acid. J. Clin. Biochem. Nutr. 61:169-175
  196. Burk, R.F. and Hill, K.E. (2009) Selenoprotein P-expression, functions, and roles in mammals. Biochim. Biophys. Acta 1790:1441-7
  197. Gille, L. and Nohl, H. (2000) The existence of a lysosomal redox chain and the role of ubiquinone. Arch. Biochem. Biophys. 375:347-54
  198. Beyer, R.E. (1994) The relative essentiality of the antioxidative function of coenzyme Q–the interactive role of DT-diaphorase. Mol. Aspects Med. 15 Suppl:s117-29
  199. Ekroos, M. and Sjögren, T. (2006) Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc. Natl. Acad. Sci. U. S. A. 103:13682-13687
  200. Rashid, J.R. et al. (1992) Acetylation status using hydralazine in African hypertensives at Kenyatta National Hospital. East Afr. Med. J. 69:406-408
  201. Golka, K. et al. (2002) The enhanced bladder cancer susceptibility of NAT2 slow acetylators towards aromatic amines: a review considering ethnic differences. Toxicol. Lett. 128:229-241
  202. Mattano, S.S. et al. (1989) Purification and biochemical characterization of hepatic arylamine N-acetyltransferase from rapid and slow acetylator mice: identity with arylhydroxamic acid N,O-acyltransferase and N-hydroxyarylamine O-acetyltransferase. Mol. Pharmacol. 35:599-609
  203. Knox, R.J. et al. (1991) Bioactivation of CB 1954: reaction of the active 4-hydroxylamino derivative with thioesters to form the ultimate DNA-DNA interstrand crosslinking species. Biochem. Pharmacol. 42:1691-1697
  204. Favaudon, V. (1982) On the mechanism of reductive activation in the mode of action of some anticancer drugs. Biochimie 64:457-475
  205. Welch, E.M. et al. (2007) PTC124 targets genetic disorders caused by nonsense mutations. Nature 447:87-91
  206. Goldmann, T. et al. (2012) A comparative evaluation of NB30, NB54 and PTC124 in translational read-through efficacy for treatment of an USH1C nonsense mutation. EMBO Mol. Med. 4:1186-1199
  207. Kerem, E. et al. (2008) Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet 372:719-727
  208. Brunetti-Pierri, N. (2008) Gene therapy for inborn errors of liver metabolism: progress towards clinical applications. Ital. J. Pediatr. 34:2
  209. Elford, H.L. and Lin, A.L. (1985) Adenosine deaminase impairment and ribonucleotide reductase in human cells. Ann. N. Y. Acad. Sci. 451:98-9112
  210. Benveniste, P. and Cohen, A. (1995) p53 expression is required for thymocyte apoptosis induced by adenosine deaminase deficiency. Proc. Natl. Acad. Sci. U. S. A. 92:8373-8377
  211. Joachims, M.L. et al. (2008) Inhibition of deoxynucleoside kinases in human thymocytes prevents dATP accumulation and induction of apoptosis. Nucleosides Nucleotides Nucleic Acids 27:816-820
  212. Wen, J. et al. (2010) Adenosine deaminase enzyme therapy prevents and reverses the heightened cavernosal relaxation in priapism. J. Sex. Med. 7:3011-3022
  213. Burnett, A.L. and Bivalacqua, T.J. (2008) Glucose-6-phosphate dehydrogenase deficiency: an etiology for idiopathic priapism?. J. Sex. Med. 5:237-240
  214. Phatarpekar, P.V. et al. (2010) Role of adenosine signaling in penile erection and erectile disorders. J. Sex. Med. 7:3553-64
  215. Polmar, S.H. et al. (1976) Enzyme replacement therapy for adenosine deaminase deficiency and severe combined immunodeficiency. N. Engl. J. Med. 295:1337-1343
  216. Gaspar, H.B. (2010) Bone marrow transplantation and alternatives for adenosine deaminase deficiency. Immunol. Allergy Clin. North Am. 30:221-236
  217. Jevsevar, S. et al. (2010) PEGylation of therapeutic proteins. Biotechnol. J. 5:113-128
  218. Aiuti, A. et al. (2009) Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N. Engl. J. Med. 360:447-458
  219. van Capelle, C.I. et al. (2010) Effect of enzyme therapy in juvenile patients with Pompe disease: a three-year open-label study. Neuromuscul. Disord. 20:775-782
  220. Ghosh, P. et al. (2003) Mannose 6-phosphate receptors: new twists in the tale. Nat. Rev. Mol. Cell Biol. 4:202-212
  221. McVie-Wylie, A.J. et al. (2008) Biochemical and pharmacological characterization of different recombinant acid α-glucosidase preparations evaluated for the treatment of Pompe disease. Mol. Genet. Metab. 94:448-455
  222. Barranger, J.A. and O'Rourke, E. (2001) Lessons learned from the development of enzyme therapy for Gaucher disease. J. Inherit. Metab. Dis. 24 Suppl 2:89-96
  223. Amory, J.K. et al. (2007) Miglustat has no apparent effect on spermatogenesis in normal men. Hum. Reprod. 22:702-707
  224. Jones, R.H. (1986) Is there a property interest in scientific research data?. Berkeley Technol. Law J. 1:447-482
  225. Mazzone, J. (2006) Copyfraud. N. Y. Univ. Law Rev. 81:1026-1098
  226. Gorsuch, N. (2008) Appeal from the United States District Court for the District of Utah (D.C. No. 2:06-CV-97-TC).
  227. de Meis, L. et al. (2010) Fusion of the endoplasmic reticulum and mitochondrial outer membrane in rats brown adipose tissue: activation of thermogenesis by Ca2+. PLoS One 5:e9439