
Metabolism lecture slides

These lecture slides have been developed for undergraduate university courses.

They are free for everyone to use.

Please see mpalmer.heresy.is/webnotes/Metabolism for updates, PowerPoint

versions of these slides, and lecture notes.
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Chapter 1

Introduction
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Significance of metabolism in medicine

◮ hereditary enzyme defects

◮ diabetes, atherosclerosis, gout

◮ antimetabolites in the chemotherapy of cancers and infections

◮ inactivation and elimination of xenobiotics and drugs
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Catabolic and anabolic reactions

Foodstuffs Small intermediates

Small intermediates CO2 +H2O

Complex

biomolecules

NADP+

NADPH+H+

ADP+Pi

ATP

O2
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Diversity of metabolism: pathways in plants and bacteria

Pathway Organisms

photosynthesis plants and cyanobacteria

nitrogen fixation specialized soil bacteria

oxidation or reduction of

inorganic minerals

archaebacteria

acid- and gas-producing

fermentations

anaerobic bacteria
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Types of foodstuffs

◮ carbohydrates

◮ protein

◮ fat

◮ nucleic acids
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Breakdown of foodstuffs: Overview

Glycogen

Carbohydrates

Glucose

Pyruvate

Proteins

Amino acids

Acetyl-CoA

CO2 + H2O

Triacylglycerol (fat)

Fatty acids

Ketone bodies

ADP + Pi

ATP
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Functional anatomy of the digestive system

StomachLiver

Small intestine Large intestine

Pancreas

Liver

Pancreatic duct

Duodenum

Bile bladder

Bile duct

8 / 575



Intestinal organs: functional overview

Organ Function

stomach killing of microbes contained in the food;

protein denaturation

small intestine breakdown of macromolecules to small

molecules, uptake of the latter

large intestine fluid and ion reuptake

pancreas production of digestive enzymes and of

hormones

liver production of bile; metabolic homeostasis
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The portal circulation
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Liver tissue structure

AAAAAAAAAAAAAAAAA BBBBBBBBBBBBBBBBB

CCCCCCCCCCCCCCCCC

Central vein

Sinusoid

Portal vein branch

Bile duct tributary

Liver artery branch

A–C reproduced with permission from pathorama.ch.
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Blood flow and bile flow within the liver lobule

Liver artery branch

Portal vein branch

Bile duct tributary

Liver vein tributary
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The stomach: functions of gastric acid

◮ HCl, pH 1–2

◮ secreted by specialized cells in the mucous membrane (parietal cells)

◮ kills germs contained in food; patients with lack of gastric acid are at increased

risk of intestinal infection

◮ denatures food proteins and makes them accessible to cleavage by proteases
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Gastric acid and pepsin in protein digestion
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Function of the exocrine pancreas

◮ secretion of digestive enzymes

◮ amylase
◮ proteases, peptidases
◮ lipases
◮ DNAse, RNAse

◮ secretion of sodium bicarbonate to neutralize gastric acid
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Roles of bile in digestion

◮ Bile acids solubilize triacylglycerol and make it accessible to pancreatic lipase

◮ Bicarbonate contributes to the neutralization of gastric acid
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The small intestine
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Microscopic structure of the small intestine

Left panel with permission from pathorama.ch. Right panel with permission from

http://www.udel.edu/Biology/Wags/histopage/histopage.htm.

18 / 575

pathorama.ch
http://www.udel.edu/Biology/Wags/histopage/histopage.htm


Amylose and amylopectin are polymers of α-d-glucose
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Amylase breaks down starch to maltose and isomaltose
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Mechanism of glucose uptake from the gut

Gut lumen Cytosol Interstitial fluid

Glucose Glucose Glucose

2 Na
+

2 Na
+

SGLT1 GLUT2
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The large intestine

◮ Anaerobic milieu—99% of all bacteria in the large intestine are strict anaerobes

◮ Bacteria degrade non-utilized foodstuffs, reducing osmotic activity of gut

content

◮ Mucous membrane recovers water and electrolytes

◮ Bacterial metabolism releases potentially toxic products (e.g. ammonia), which

are taken up and inactivated by the liver
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A metabolic map for
Chem 333

UDP-Galactose UDP-Glucose Glycogen

Galactose Galactose-1-P Glucose-1-P 6-P-Gluconate Ribulose-5-P

Lactose Glucose Glucose-6-P

Sucrose Amylose Fructose-6-P Erythrose-4-P Xylulose-5-P

Fructose Fructose-1,6-bis-P Sedoheptulose-7-P

Fructose-1-P Glyceraldehyde Glyceraldehyde-3-P Ribose-5-P

1,3-bis-P-Glycerate

3-P-Glycerate

2-P-Glycerate

Phosphoenol-

pyruvate

Pyruvate

Acetyl-CoA

CO2

Oxaloacetate

Malate

Fumarate

Succinate

Citrate

Isocitrate

α-Ketoglutarate

Succinyl-CoA

HMG-CoA

Acetoacetate

Malonyl-CoA

Fatty acyl-CoA

Glycerol-P

Hydroxybutyrate

Triacylglycerol

Fatty acids

Glycerol

Cholesterol

Glutamate

Glutamine

Arg

His

Pro

Leu

Lys

Phe

Trp

Tyr

Ile

Met

Thr

Val

Ala

Cys

Ser

Gly

Phe

Tyr

H2
CO2

CO2

H2O

O2 ADP+Pi

ATP

Citrulline Asp

Argininosuccinate

Arginine

Ornithine

Carbamoyl-P

CO2NH3
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A more realistic metabolic map
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Chapter 2

Refresher
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The “catalytic triad” in the active site of chymotrypsin

O

H

N

N

H ⊖O O

Asp102

His57

Ser195
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The catalytic mechanism of chymotrypsin
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IUBMB classification of enzymes

Enzyme class Catalyzed reactions

oxidoreductases catalyze redox reactions, frequently involving one

of the coenzymes NAD+, NADP+, or FAD

transferases transfer functional groups between metabolites,

e.g. a phosphate from ATP to a sugar hydroxyl

group

hydrolases catalyze hydrolysis reactions, such as those in-

volved in the digestion of foodstuffs

lyases perform elimination reactions that result in the

formation of double bonds

isomerases facilitate the interconversion of isomers

ligases form new covalent bonds at the expense of ATP

hydrolysis
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A simile: the Walchensee–Kochelsee hydroelectric power system
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Analogies in the simile

Hydroelectric system Metabolic pathway

altitude energy

difference in altitude between

lakes

energy difference between

metabolites (∆G)

height of ridge between lakes ∆G∗ of uncatalyzed reaction

tunnels enzymes

tunnel barrages regulatory switches of

enzymes
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Discrepancies in the simile

Hydroelectric system Metabolic pathway

all tunnels work the same way enzymes have different catalytic

mechanisms

potential energy determined

by one parameter: altitude

free energy of metabolites depends

on two parameters: ∆H and ∆S

water always collects at the

bottom

molecules partition between lower

and higher energy levels
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The catalytic mechanism of glutamine synthetase
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The phosphofructokinase reaction

O

PO O−

O−

O

OH

OH

OH

CH2OH O

PO O−

O−

O

OH

OH

OH

O

PO O−

O−

ATP

ADP

Fructose-6-phosphate Fructose-1,6-bisphosphate
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The adenylate kinase reaction equilibrates AMP, ADP and ATP

2ADP ATP+AMP

K =
[ATP] [AMP]

[ADP]
2

⇐⇒ [AMP] = [ADP]
2 K

[ATP]

[AMP]

[ADP]
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Allosteric regulation of phosphofructokinase by AMP
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How allosteric regulation works
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Enzyme regulation by protein phosphorylation
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Oligomeric enzymes behave cooperatively
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Substrate cycles can amplify molecular regulation mechanisms

A

B

C

A

B

C

A

B

C

E

A

B

C

E

(a) (b)
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Regulation of enzyme molecule abundance

◮ transcriptional induction

◮ accelerated mRNA degradation

◮ ubiquitin ligation, followed by proteolytic degradation
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Chapter 3

Glycolysis
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Overview of glucose metabolism

Pathway Function

glycolysis, citric acid

cycle, respiratory chain

complete degradation of glucose for ATP

production

hexose monophosphate

shunt

degradation of glucose for regeneration

of NADPH

glycogen synthesis and

degradation

short-term glucose storage

gluconeogenesis synthesis of glucose from amino acids,

lactate, or acetone
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The place of glycolysis in glucose degradation

glucose pyruvate

acetyl-CoA fatty acids

triacylglycerol

“H2”

H2O
mitochondrion

glycolysis

CO2

pyruvate

dehydrogenase CO2

citric acid cycle

O2 ADP+Pi

ATP

respiratory chain
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Alternate structures of d-glucose
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OH
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CH2OH
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α-d-Glucose Aldehyde form β-d-Glucose
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Reactions in glycolysis
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The phosphate groups in ATP are shielded from nucleophilic

attack

O

OH
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N
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. . . and therefore, phosphate group transfer needs assistance from enzymes.
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The catalytic mechanism of hexokinase
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Hexokinase envelopes its substrates to prevent ATP hydrolysis
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Phosphohexose isomerase performs acid-base catalysis
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Glyceraldehyde-3-phosphate dehydrogenase carries out covalent

catalysis
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Structure and redox chemistry of NAD+ and NADP+
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Pyruvate Kinase
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Energy-rich functional groups in substrates of glycolysis

◮ the enolphosphate in PEP

◮ the carboxyphosphate in 1,3-bisphosphoglycerate

◮ the thioester in the active site of glyceraldehyde-3-dehydrogenase
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Regeneration of cytosolic NAD+ under aerobic conditions

Glyceraldehyde-3- P 1,3-Bis- P -glycerate

NAD+ NADH+H+

CarrierCarrier-H2

1/2 O2 H2O Mitochondrion

54 / 575



Under anaerobic conditions, NAD+ is regenerated by lactate

dehydrogenase

Glyceraldehyde-3- P 1,3-Bis- P -glycerate

NAD+ NADH+H+

COO−

H OH

CH3

COO−

O

CH3

Lactate Pyruvate
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Ethanolic fermentation in yeast serves a dual purpose

Glyceraldehyde-3- P 1,3-Bis- P -glycerate

NAD+ NADH+H+

H2C OH

C

CH3

HC O

C

CH3

COO−

O

CH3

Ethanol PyruvateCO2Acetaldehyde
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Kinetics of glucose transport by facilitated diffusion

Vtransport = Vmax
[S]

KM + [S]
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GLUT transporters in different tissues vary in their affinity for

glucose
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Reaction velocities of hexokinase and glucokinase
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Chapter 4

Catabolism of sugars other than glucose
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Dietary sugars other than glucose

Trivial name Composition Source

lactose (milk sugar) disaccharide of glucose

and galactose

milk

sucrose disaccharide of glucose

and fructose

sugar cane, sugar

beet, other fruits

fructose monosaccharide various fruits

sorbitol sugar alcohol fruits; semisyn-

thetic

ribose, deoxyribose monosaccharides nucleic acids
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Degradation of fructose and sucrose
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The fructolysis pathway
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Fructose intolerance

Fructose Fructose-1- P Glyceraldehyde

ATP ADP

Dihydroxyacetone- P

Glyceraldehyde-3- P

3- P -glycerate 1,3-Bis- P -glycerate Pi

Fructokinase Aldolase B

PG-kinase

NADH+H+ NAD+
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Lactose and galactose
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β-d-galactose β-d-galactosyl-(1 4)-d-glucoside (lactose)
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The Leloir pathway for galactose utilization

Lactose Galactose

Glucose Galactose-1- P UDP-Glucose

Glucose-6- P Glucose-1- P UDP-Galactose

Gal-1- P uridyltransferase

. . .

Lactase

Galactokinase

UDP-Gal epimerase

Phosphogluco-

mutase

Glycolysis
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Mechanism of UDP-galactose epimerase
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Lactose intolerance
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Galactosemia

Type Enzyme deficiency Accumulating metabolites

I galactose-1-phosphate-

uridyltransferase

galactose, galactose-1-phosphate,

galactitol, galactonate

II galactokinase galactose, galactitol

III UDP-galactose epimerase galactose-1 phosphate, UDP-

galactose

sorbitol pathway
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Sorbitol is an intermediate of the polyol pathway

aldose

reductase

sorbitol

dehydrogenase
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Chapter 5

Pyruvate dehydrogenase and the citric acid cycle
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Pyruvate degradation occurs in the mitochondria

Glucose Pyruvate

Pyruvate

Cytosol

Mitochondria

Acetyl-CoA

CO2

Oxaloacetate

Malate

Fumarate

Succinate

Citrate

Isocitrate

α-Ketoglutarate

Succinyl-CoA

H2
CO2

CO2

H2O

O2 ADP+Pi

ATP

H+

H+
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The PDH reaction occurs in three successive steps that are

catalyzed by three different subunits

O OH

OCH3

CoA
S

OCH3

CO2

E1

CoA–SH

E2

NAD
+

NADH+H+

E3
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The structural organization of the E. coli PDH complex

E2 E2 + E1 E2 + E1 + E3
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A lipoamide tether guides the substrate from one active site to

the next

NHO

S

O

S
H

E2

E1 E3
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The pyruvate dehydrogenase reaction involves multiple

coenzymes

Coenzyme Subunit Role in catalysis

thiamine pyro-

phosphate

E1 provides a carbanion for nucleophilic

attack on the substrate

lipoamide E2 transfers substrate to coenzyme A,

retains hydrogen

flavin adenine di-

nucleotide (FAD)

E3 transfers H2 from lipoamide to NAD+
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Thiamine pyrophosphate forms a carbanion
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Decarboxylation of pyruvate by E1
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Release of acetyl-CoA and disposal of hydrogen
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Alternate metabolic destinations of pyruvate

1. Conversion to acetyl-CoA by PDH for complete degradation or for synthesis of

fatty acids and cholesterol

2. Carboxylation to oxaloacetate, for use in gluconeogenesis or in the citric acid

cycle

3. Synthesis of amino acids, e.g. transamination to alanine

4. Reduction to lactate
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Regulation of PDH by allosteric effectors and by phosphorylation

Fructose-1,6-bis- P CoA-SH, NAD+, pyruvate Acetyl-CoA, NADH

PDH

PDH- P

kinase phosphatase

Ca++

in E. coli

Catalysis

Activation

Inhibition
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The overall reaction of the TCA cycle: does it add up?

CH3COOH 2 CO2 + 4 H2

2 H2O + CH3COOH 2 CO2 + 4 H2

cycle
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The citrate synthase reaction
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Reactions in the TCA cycle: from citrate to succinyl-CoA
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Reactions in the TCA: from succinyl-CoA to oxaloacetate
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α-Ketoglutarate dehydrogenase resembles PDH
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Regulation of the citric acid cycle

◮ ATP and NADH inhibit isocitrate dehydrogenase

◮ NADH inhibits α-ketoglutarate dehydrogenase

◮ High levels of NADH will lower the oxaloacetate concentration, which limits

citrate synthase activity
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Chapter 6

The respiratory chain
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Overview of the respiratory chain
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Functional stages in the respiratory chain

1. H2 is abstracted from NADH+H+ and from FADH2

2. The electrons obtained with the hydrogen are passed down a cascade of carrier

molecules located in complexes I–IV, then transferred to O2

3. Powered by electron transport, complexes I, III, and IV expel protons across the

inner mitochondrial membrane

4. The expelled protons reenter the mitochondrion through ATP synthase, driving

ATP synthesis
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Uncoupling proteins dissipate the proton gradient
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The uncoupling action of dinitrophenol
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The Racker experiment: bacteriorhodopsin can drive ATP

synthase
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Molecules in the electron transport chain

Complex I Complex II Complex III Complex IV

cytochrome C

Q

Cytoplasmic side

Mitochondrial matrix
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Iron-containing redox cofactors
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Flavin-containing redox cofactors
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The respiratory chain generates reactive oxygen species as

by-products
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Redox reactions can be compartmentalized to produce a

measurable voltage

V

1

2
H2 H⊕

e⊖

Q Q⊖

e⊖

V

H2 2H⊕

2e⊖

H⊕+NAD⊕ NADH

2e⊖

∆E > 0 ∆E < 0

98 / 575



Energetics of electron transport

◮ Each electron transfer step along the chain is a redox reaction: the first cofactor

is oxidized and the second one is reduced

◮ In a redox reaction, electrons flow spontaneously if the reduction potential

increases in the forward direction (∆E > 0)

◮ Redox reactions, like other reactions, proceed spontaneously if their free energy

is negative (∆G < 0)

How is the reduction potential of a redox reaction related

to its free energy?
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The redox potential (∆E) is proportional to the free energy (∆G)

∆G ≡
energy

moles (number of molecules)

∆E ≡
energy

charge transferred

∆G =
energy

charge transferred
×

charge transferred

moles

∆G = ∆E ×
charge transferred

moles

therefore

∆G = −∆E ×n× F
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Redox potentials and free energies in the respiratory chain
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The first two redox steps in complex I

NADH + H+ + FMN NAD+ + FMNH2

FMNH2 + FeIII – S FMNH• + H+ + FeII – S

FMNH• + FeIII – S FMN + H+ + FeII – S
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The reduction of coenzyme Q involves protons and electrons
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The Q cycle (criminally simplified)
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Reduction of oxygen by cytochrome C oxidase (complex IV)
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How is electron transport linked to proton pumping?

◮ Some redox steps in the ETC are coupled to proton binding and dissociation,

which may occur at opposite sides of the membrane. Example: Coenzyme Q

cycle at complex III

◮ Redox steps that do not involve hydrogen directly need a different mechanism

in order to contribute to proton pumping. Example: Sequence of iron-sulfur

clusters and hemes in complex IV
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Linking electron movement to proton pumping: A conceptual

model
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Proton pumping creates both a concentration gradient and a

membrane potential

∆Gconcentration = RT × lnK = 6
kJ

mol

∆Gpotential = ∆ψ×n× F = 15
kJ

mol
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Structure of ATP synthase
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c c
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The binding-change model of ATP synthase catalysis

ADP Pi
ATP

ATP

γ γ

γ

110 / 575



How does proton flux drive ATP synthase?
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Proton flux causes c chains to rotate within the F0 disk
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A hypothetical malate-oxaloacetate shuttle

cytosol mitochondrial matrix

malate malate

oxaloacetate oxaloacetate
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The malate-aspartate shuttle

cytosol

H+glutamate
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The glycerophosphate shuttle

outer membrane inner membrane
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DHAP DHAP

NAD+
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The two mitochondrial isocitrate dehydrogenases

Isocitrate

α-Ketoglutarate

NADP+

NADPH+H+

CO2

NAD+

NADH+H+

CO2
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Nicotinamide nucleotide transhydrogenase couples hydrogen

transfer with proton transport

H
+

NADP
+

NADPH+H
+

NAD
+

NADH+H
+
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At rest, transhydrogenase and the two isocitrate dehydrogenases

form a futile cycle

transhydrogenase

H+

NAD-dependent
dehydrogenase

α-ketoglutarate + CO2

NAD+

NADH

NADP-dependent
dehydrogenase

isocitrate

NADP+

NADPH
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When ATP demand is high, transhydrogenase turns into an

auxiliary proton pump

transhydrogenase

H+

NAD-dependent
dehydrogenase

α-ketoglutarate + CO2

NAD+

NADH

NADP-dependent
dehydrogenase

isocitrate

NADP+

NADPH
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Theoretical ATP yield per molecule of glucose completely

oxidized

Quantity Intrinsic value Per glucose

Accrued hydrogen 10 NADH, 2 FADH2

Protons ejected 10 per NADH, 6

per FADH2

112

Proton-powered ATP

synthase revolutions

10 protons per

revolution

11.2

ATP from ATP synthase 3 per revolution 33.6

ATP from glycolysis 2

GTP from TCA cycle 2

Total 37.6
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Processes other than ATP synthesis that are powered by the

proton gradient

◮ Nicotinamide nucleotide transhydrogenase

◮ Uncoupling proteins; proton leak

◮ Secondary active transport:

◮ ATP4 – /ADP3 – antiport
◮ phosphate/H+ symport
◮ amino acid/H+ symport
◮ pyruvate/H+ symport
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Chapter 7

Gluconeogenesis
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Glucose is an indispensable metabolite

◮ The brain requires at least ~50% of its calories in the form of glucose

◮ Red blood cells exclusively subsist on glucose

◮ Glucose is a precursor of other sugars needed in the biosynthesis of

nucleotides, glycoproteins, and glycolipids

◮ Glucose is needed to replenish NADPH, which supplies reducing power for

biosynthesis and detoxification
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Overview of

gluconeogenesis

Glucose

Glucose-6- P

Fructose-6- P

Fructose-1,6-bis- P

Glyceraldehyde-3- P

P -enolpyruvate

Pyruvate
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Oxaloacetate

Lactate

Acetone

Glycerol

Amino acids
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The pyruvate carboxylase reaction
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The active site of E. coli biotin carboxylase

Biotin

Arg338 Glu296

HCO–
3 Mg2+

Arg292

ADP
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Activation of bicarbonate
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The carboxylation of biotin
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The carboxylation of pyruvate
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The phosphoenolpyruvate carboxykinase reaction
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Fructose-1,6-bisphosphatase and glucose-6-phosphatase

Fructose-1,6-bisphosphate + H2O Fructose-6-phosphate + Pi

Glucose-6-phosphate + H2O Glucose + Pi
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Energy balance of gluconeogenesis

Reaction ATP/GTP input

2 pyruvate 2 oxaloacetate 2

2 oxaloacetate 2 PEP 2

2 3- P -glycerate 2 1,3-bis- P -glycerate 2

Total 6
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Mitochondrial substrate transport in gluconeogenesis
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Ethanol degradation inhibits gluconeogenesis
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Simultaneous activity of glycolysis and gluconeogenesis creates

futile cycles

glucose

glucose-6- P
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Glucose phosphorylation cycling involves two separate

compartments

Glucose Glucose

Glucose-6- P Glucose-6- P

Hexokinase
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Allosteric regulation limits fructose-6-phosphate phosphorylation

cycling

Fructose-6- P

ATP

AMP

Fructose-2,6-bis- P
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The level of fructose-2,6-bisphosphate is controlled by hormones

Epinephrine, glucagon Insulin

Adenylate cyclase Phosphodiesterase

ATP cAMP AMP

Protein kinase A

PFK 2/F-2,6-bis-P’ase PFK 2/F-2,6-bis-P’ase

Fructose-2,6-bis- P

Fructose-6- P
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The secondary messengers cAMP and fructose-2,6-bisphosphate
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Regulation of pyruvate kinase

◮ allosteric activation by fructose-1,6-bisphosphate

◮ allosteric inhibition by ATP and alanine

◮ inhibition by PKA-mediated phosphorylation
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Chapter 8

Glycogen metabolism
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Why store glucose in polymeric form?

◮ The osmotic pressure is governed by the gas equation:

pV = nRT ⇐⇒ p =
n

V
RT

◮ Glycogen amounts to 10% of the liver’s wet weight, equivalent to 600 mM

glucose

◮ When free, 600 mM glucose would triple the osmotic activity of the

cytosol—liver cells would swell and burst

◮ Linking 2 (3, . . . ) molecules of glucose divides the osmotic effect by 2 (3, . . . ),

permitting storage of large amounts of glucose at physiological osmolarity
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Covalent structure of glycogen
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The size of glycogen particles is limited by crowding in the outer

layers
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Glycogen is more loosely packed and more soluble than amylose

Glycogen Amylose
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Life cycle of glycogen

Synthesis:

1. synthesis of an activated precursor, UDP-glucose, by UTP:glucose-1-phosphate

uridylyltransferase

2. initiation of glycogen synthesis by glycogenin

3. introduction of branches by branching enzyme

4. chain elongation by glycogen synthase

5. repeat steps 3 and 4

Degradation:

1. depolymerization of linear strands by phosphorylase

2. removal of branches by debranching enzyme

3. repeat steps 1 and 2
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Activation of glucose for glycogen synthesis
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Overview of glycogen synthesis

Glycogenin

Branching enzyme

Glycogen synthase

HO Gg

UDP-Glc

UDP

UDP-Glc

UDP

UDP-Glc

UDP

. . .

O GgGlcGlcGlcGlcGlcGlcGlcGlcGlcGlcGlcGlc

O GgGlcGlcGlcGlc

GlcGlcGlcGlcGlcGlc

GlcGlc

UDP-Glc

UDP

. . .

UDP-Glc

UDP

. . .

148 / 575



A hypothetical reaction mechanism of glycogen synthase
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An alternative glycogen synthase mechanism
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Overview of glycogen degradation
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The reaction mechanism of phosphorylase
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Lysosomal glycogen disposal

◮ concerns a minor fraction of glycogen

◮ key enzyme: acid maltase; enzyme defect causes slow but inexorable glycogen

accumulation

◮ possible role: disposal of structurally aberrant glycogen particles that have

become “tangled up” during repeated cycles of glucose accretion and depletion
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Allosteric regulation of glycogen synthase and phosphorylase
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Hormonal control of glycogen metabolism

Epinephrine, glucagon Insulin

Adenylate cyclase Phosphodiesterase

ATP cAMP AMP

Protein kinase A
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synthase
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kinase
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Regulatory differences between liver and muscle phosphorylase

Liver enzyme Muscle enzyme

Inhibition by glucose + −

Activation by Ca2+
− +

Activation by AMP even when

unphosphorylated

− +
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Liver glycogen utilization
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Muscle glycogen utilization
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The Cori cycle

Glucose

Pyruvate Lactate

2 ATP

2 ADP

NADH+H+
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Glucose-6-phosphatase deficiency (von Gierke disease)

Biochemical defect:

◮ glucose-6-phosphate formed in gluconeogenesis or glycogen degradation

cannot be converted to free glucose

◮ glucose cannot be exported from liver and kidney cells

Clinical manifestations:

◮ glycogen builds up in liver and kidneys (organ enlargement and functional

impairment)

◮ severe hypoglycemia

◮ lactic acidosis

◮ hyperlipidemia

◮ hyperuricemia
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Acid maltase deficiency (Pompe disease)

Infant chest X-ray,
normal heart

Infant with Pompe
disease, distended heart

Normal skeletal muscle
(transverse section)

Glycogen aggregates
in Pompe disease
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Muscle phosphorylase deficiency (McArdle’s disease)

◮ Deficient glycogen breakdown inhibits rapid ATP replenishment

◮ Patients experience rapid exhaustion and muscle pain during exertion

◮ Liver phosphorylase and blood glucose homeostasis remain intact

muscle glycogen utilization
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Lafora disease

◮ deficiency for laforin, a glycogen phosphatase

◮ accumulation of hyper-phosphorylated glycogen (Lafora bodies)

◮ patients develop epilepsy, dementia
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Chapter 9

The hexose monophosphate shunt
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The hexose monophosphate shunt: Overview

Glucose-6- P

Ribulose-5- P

Ribose-5- P

RNA, ribonucleotides

Ribo-, deoxyribonucleotides

2 NADP+

CO22 NADPH+H+
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Reactions in the oxidative stage
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Reactions in the sugar shuffle stage
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Ketoses and aldoses in the HMS
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The mechanism of transketolase
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The mechanism of transaldolase
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Why do we need both NADH and NADPH?
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NADPH generation by malic enzyme
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NADPH generation by transhydrogenase and NADP-linked

isocitrate dehydrogenase

nicotinamide nucleotide
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Uses of NADPH

1. synthesis of fatty acids and cholesterol

2. fixation of ammonia by glutamate dehydrogenase

3. oxidative metabolism of drugs and poisons by cytochrome P450 enzymes

4. generation of nitric oxide and of reactive oxygen species by phagocytes

5. scavenging of reactive oxygen species that form as byproducts of oxygen

transport and of the respiratory chain
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The nitric oxide synthase reaction
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Signaling effects of nitric oxide
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Phagocytes use NADPH to generate reactive oxygen species
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Scavenging of reactive oxygen species requires NADPH, too
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Glucose-6-phosphate dehydrogenase deficiency

◮ most patients are healthy most of the time—hemolytic crises occur upon

exposure to drugs or diet components that cause enhanced formation of ROS

◮ manifest in red blood cells because these cells lack protein synthesis—no

replacement of deficient protein molecules

◮ affords partial protection against malaria—similar to sickle cell anemia and

other hemoglobinopathias

◮ X-chromosomally encoded—males more severely affected
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Vicia faba and favism
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Redox cycling of isouramil
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Malaria parasites detoxify heme by crystallization
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Primaquine and glucose-6-phosphate dehydrogenase deficiency
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Chapter 10

Triacylglycerol metabolism
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Foodstuffs and their energy contents

Foodstuff Energy (kcal/g)

protein 4

carbohydrates 4

triacylglycerol 9

alcohol 7

185 / 575



Carbon pools in carbohydrate and fat metabolism
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Triacylglycerol and its cleavage products
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Solubilization of fat by detergents
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Uptake and re-packaging of digested fat in the small intestine
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The lymphatics drain excess fluid from the interstitial space
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interstitial
space

blood fluid filtration
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lymph drainage
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lymph
vessel
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Chylomicrons are drained from the intestine through the

lymphatics, bypassing the liver
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Lipoprotein lipase extracts triacylglycerol from chylomicrons
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Medium-chain fatty acids

◮ contain less than 12 carbon atoms

◮ low content in most foods, but relatively high (10–15%) in palm seed and

coconut oil, from which they are industrially prepared

◮ triglycerides with medium chains are more soluble and more rapidly

hydrolyzed by gastric and pancreatic lipase

◮ not efficiently re-esterified inside intestinal cells; systemic uptake mostly as free

fatty acids

◮ reach mitochondria by diffusion, without prior activation to acyl-CoA and

acyl-carnitine
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Two activated forms of fatty acids
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Activation of fatty acids and transport to the mitochondrion
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Reactions in β-oxidation
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Shared reaction patterns in β-oxidation and TCA cycle

Enzyme Reaction Cosubstrate TCA cycle pendant

acyl-CoA dehydro-

genase
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The reaction mechanism of thiolase
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Utilization of propionate
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Organ relationships in triacylglycerol utilization
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Brown fat tissue
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Ketone body metabolism
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Synthesis of acetoacetate and β-hydroxybutyrate
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Decarboxylation of acetoacetate
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Acetone can serve as a precursor for gluconeogenesis
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Anticonvulsant effects of acetone and acetol
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Fatty acid synthesis

◮ carried out mostly by one large cytosolic enzyme (fatty acyl synthase)

◮ uses acetyl-CoA, which is activated by carboxylation

◮ reducing power provided by NADPH

◮ final product: palmitate (hexadecanoate)

◮ elongation and desaturation carried out by dedicated enzymes in the ER

207 / 575



The acetyl-CoA carboxylase reaction
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The structure of fatty acid synthase
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Phosphopantetheine acts as a flexible tether in

acyl carrier protein
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Fatty acid synthase reactions (1)
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Fatty acid synthase reactions (2)
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Mitochondrial export of acetyl-CoA via citrate
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Mitochondrial export of acetyl-CoA via acetoacetate
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Elongation and desaturation of fatty acids

◮ elongases reside in mitochondria and endoplasmic reticulum

◮ chemistry of elongation similar to β-oxidation in mitochondria, similar to fatty

acid synthase in the ER

◮ desaturases occur in the ER, introduce double bonds at various positions

◮ double bonds are created at least 9 carbons away from the ω end—ω-3 fatty

acids cannot be formed in human metabolism and are therefore essential
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Cerulenin, an antibiotic that irreversibly inhibits fatty acid

synthase
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Fatty acid synthase inhibition slows tumor growth in mouse

experiments
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The glyoxylate cycle
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Reactions in the glyoxylate cycle
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Chapter 11

Cholesterol metabolism
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Biological significance of cholesterol

◮ Cholesterol is an essential lipid constituent of cell membranes

◮ Cholesterol is a precursor of steroid hormones and of bile acids

◮ Intermediates of cholesterol biosynthesis are required to make vitamin D and

for posttranslational modification of membrane proteins

◮ High plasma cholesterol promotes atherosclerosis
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Processes that determine the cholesterol balance

◮ intestinal uptake of dietary cholesterol

◮ de novo cholesterol synthesis

◮ synthesis of steroid hormones from cholesterol

◮ synthesis of bile acids from cholesterol, and their biliary secretion

◮ biliary secretion of surplus cholesterol in unmodified form
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Overview of cholesterol synthesis

acetyl-CoA HMG-CoA mevalonate

activated C5activated C10activated C15

squalene (linear C30) lanosterol cholesterol

HMG-CoA

reductase

223 / 575



Initial activation steps in cholesterol synthesis
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Formation of a C10 intermediate
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Formation of C15 and C30 intermediates
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Squalene cyclization yields the first sterol intermediate
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Demethylation, desaturation and saturation steps convert

lanosterol to cholesterol

HO HO HO

lanosterol 7-dehydrocholesterol cholesterol
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UV-dependent synthesis of cholecalciferol
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Sterol metabolism occurs in the smooth endoplasmic reticulum

reproduced from medcell.med.yale.edu/histology, with

permission
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Transcriptional regulation of cholesterol synthesis starts in the

endoplasmic reticulum
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When cholesterol is low, SREBP is sorted to the Golgi apparatus
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Proteolytic cleavage in the Golgi releases SREBP
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Lipoprotein structure

apolipoproteins

phospholipids,
free cholesterol

triacylglycerol,
cholesterol esters
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Classification of plasma lipoproteins

Chylomicrons VLDL LDL HDL

Density (g/ml) 0.95 0.95–1.0 1.02–1.06 1.06–1.12

Origin small intestine liver liver liver

Function distribute di-

etary TAG and

cholesterol

distribute

TAG from

liver

distribute

cholesterol

from liver

return excess

cholesterol to

liver

Predominant

lipid species

TAG TAG cholesterol phospholipids,

cholesterol
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Two membrane proteins control the uptake of sterols from the

intestine

Chylomicron drainage
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Plant sterol structures
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Structures of ABC transporters in the inward-open and

outward-open conformations

ATP
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ABC transporters induce substrate “flip-flop” across the

membrane
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Transport of cholesterol between the liver and peripheral tissues
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Liver
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Stages of cholesterol transport

Dietary cholesterol

◮ Packaged into chylomicrons, which turn into chylomicron remnants through

triacylglycerol extraction by lipoprotein lipase

◮ Chylomicron remnants are taken up by the liver

Liver cholesterol (from diet, or endogenously synthesized)

◮ Packaged into VLDL

◮ Lipoprotein lipase turns VLDL into IDL and then LDL

◮ LDL is taken up through receptor-mediated endocytosis in peripheral tissues
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Cholesterol transport (ctd.)

Cholesterol in peripheral tissues

◮ HDL is produced in liver and intestines as an empty carrier for cholesterol

(containing mainly phospholipid and apo A-1)

◮ HDL binds to cells in periphery (including in vascular lesions) and takes up

surplus cholesterol

◮ Cholesterol-laden HDL is taken up into the liver by endocytosis, cholesterol is

recycled
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The lecithin-cholesterol acyltransferase (LCAT) reaction
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Cholesterol esters can be stored inside lipoprotein particles
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Bile acids are derived from cholesterol
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Bile acids undergo enterohepatic cycling
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Bile acid cycling involves multiple transport proteins
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A deficient ABCC2 transporter causes Dubin-Johnson syndrome

◮ impaired excretion of bile acids cholesterol precipitates in the bile bile

stones

◮ impaired excretion of bilirubin jaundice

◮ impaired excretion of many drugs potential drug toxicity
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Is atherosclerosis a metabolic disease?

. . . it is important to remember that the best documented

initiating factor is still hypercholesterolemia . . . additional

factors should be considered in the context of how they relate to

the processes initiated by hypercholesterolemia.

Daniel Steinberg, “Atherogenesis in perspective: Hypercholesterolemia and

inflammation as partners in crime”, Nature Medicine 8:1211 (2002).
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Macroscopic appearance of atherosclerotic lesions
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Microscopic appearance of atherosclerotic lesions

Normal artery Foam cells in early lesion

Detritus, fibrosis in advanced lesion High-grade stenosis, thrombus

A B

C D
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Development of an atherosclerotic lesion

A B C D

Thrombocyte

Foam cell

Macrophage

Endothelial cell

Cholesterol crystals

Modified LDL

Native LDL
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Metabolic aspects of atherosclerosis

◮ cholesterol uptake, synthesis and degradation

◮ cholesterol transport in the circulation: LDL (low density lipoprotein) and HDL

(high density lipoprotein)

◮ biochemical changes that turn physiological, benign LDL into an atherogenic

agent
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Two modes of uptake of cholesterol into macrophages
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Modification of LDL is essential for excessive uptake by

macrophages via the scavenger receptor

◮ LDL receptor is down-regulated once the cell is full up with cholesterol—no

further LDL will be taken up

◮ Covalently modified LDL will be taken up by macrophages via scavenger

receptors

◮ Various modifications have similar effects

◮ Modifications can affect both lipid and apolipoprotein components of LDL
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Experimental protein modifications that turn LDL into a ligand

for the scavenger receptor

protein
NH2

protein

H
N

O

protein
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N

O

NH2

protein
N

OH

OH

OH

OH

OH

unmodified amine (native LDL)

acetylated amine

carbamylated amine

glucosylated amine
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Which modifications of LDL are significant in vivo?

Modification Possible causes

acetylation easily achieved in vitro, but not plausible in

vivo

carbamylation promoted by urea, which is enhanced in

kidney disease; also promoted by smoking

glucosylation promoted by high blood glucose (diabetes)

partial proteolysis proteases released from macrophages

oxidation of lipids and

apolipoproteins

reactive oxygen species released from ma-

crophages
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How does LDL become oxidized?

◮ Phagocytes produce reactive oxygen species

◮ Transition metals (Fe, Cu) exacerbate ROS activity

◮ Lipoxygenases convert fatty acids to radicals that can bind to LDL and induce

lipid peroxidation
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Self-sustained lipid peroxidation induced by peroxy radicals
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α-Tocopherol intercepts lipid peroxidation
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Experimental evidence implicating LDL oxidation in the

pathogenesis of atherosclerosis

◮ Vitamin E reduces the severity of atherosclerosis in animal models—but not in

clinical studies on humans

◮ Antibodies against oxidized LDL are found in blood; among these, IgG promotes

atherosclerosis, whereas IgM inhibits it

◮ Haptoglobin alleles differ in the efficiency of hemoglobin clearance, which

correlates inversely with susceptibility to atherosclerosis

◮ Production of HOCl by myeloperoxidase: chlorotyrosine residues detectable in

oxLDL ex vivo—but myeloperoxidase k.o. mice have increased susceptibility to

atherosclerosis
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Lowering LDL cholesterol: therapeutic principles

◮ inhibition of cholesterol synthesis

◮ inhibition of cholesterol uptake

◮ inhibition of cholesterol ester transfer protein

◮ inhibition of bile acid reuptake

◮ LDL apheresis

262 / 575



“Statins” inhibit HMG-CoA reductase
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Inhibitors of intestinal cholesterol uptake
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Cholesterol ester transfer protein (CETP) short-circuits

cholesterol transport by lipoproteins

LDL

HDL

CETP

cholesterol

cholesterol

esters
triacylglycerol

O

NH

S

O

dalcetrapib
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Cholestyramine particles absorb bile acids

OH
O

⊖O

OH OH

N
⊕

N
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cholestyramine cholic acid
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LDL apheresis

◮ Blood is diverted through an extra-corporeal filtration device

◮ cells are separated from plasma

◮ LDL is removed from plasma by affinity methods or size-based filtration

◮ The remaining plasma and cells are returned to the circulation

◮ The procedure is repeated in weekly or biweekly intervals
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More . . .

◮ triparanol—an old drug, inhibits some CYP450 enzymes in the conversion from

lanosterol to cholesterol; withdrawn due to toxicity

◮ bezafibrate—a PPARγ agonist

◮ nicotinic acid—activates hormone-sensitive lipase through a G protein coupled

receptor named HM74A; 5 likely additional mechanisms

◮ probucol and succinobucol—supposedly antioxidants that prevent LDL

oxidation, but also cause unrelated changes in other laboratory parameters

◮ guar gum and other carbohydrate fibers —absorb and prevent intestinal uptake

of cholesterol and bile acids with variable efficiency

◮ thyroid hormone analogs—promote LDL utilization
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Familial hypercholesterolemia is due to a gene defect in the LDL

receptor

chylomicrons

chylomicron remnants

cholesterol

Liver

VLDL
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nascent HDL
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cholesterol

Other tissues
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LDL receptor

ABCA1LCAT
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Tangier disease: Disruption of cholesterol transfer to HDL

chylomicrons

chylomicron remnants

cholesterol

Liver
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LDL receptor
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A defective plant sterol exporter causes sitosterolemia
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Chapter 12

Amino acid metabolism
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Metabolic uses of amino acids

◮ building blocks for protein synthesis

◮ precursors of nucleotides and heme

◮ source of energy

◮ neurotransmitters

◮ precursors of neurotransmitters and hormones
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Outline of amino acid degradation

◮ The liver is the major site of degradation for most amino acids, but muscle and

kidney dominate the degradation of specific ones

◮ Nitrogen is removed from the carbon skeleton and transferred to

α-ketoglutarate, which yields glutamate

◮ The carbon skeletons are converted to intermediates of the mainstream carbon

oxidation pathways via specific adapter pathways

◮ Surplus nitrogen is removed from glutamate, incorporated into urea, and

excreted
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Amino acid breakdown pathways join mainstream carbon

utilization at different points of entry

Arg, Gln, Glu, His, Pro

Ile, Met, Thr, Val

Phe, Tyr

Asn, Asp

Ala, Cys, Gly, Ser

Leu, Lys, Phe, Trp, Tyr

propionyl-CoA

acetoacetate

α-ketoglutarate

succinyl-CoA

fumarate

oxaloacetate

pyruvate

acetyl-CoA

glucose

glucogenic

ketogenic
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Transamination of amino acids
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The reaction mechanism of transamination
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The ping pong bi bi mechanism of transamination
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Nitrogen disposal and excretion

◮ Nitrogen accruing outside the liver is transported to the liver as glutamine or

alanine

◮ In the liver, nitrogen is released as free ammonia

◮ Ammonia is incorporated into urea

◮ Urea is released from the liver into the bloodstream and excreted through the

kidneys
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The urea cycle, part 1: carbamoylphosphate synthetase
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The urea cycle, part 2: subsequent reactions
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The urea cycle in context

amino acid α-keto acid

α-KG Glu

NH3

carbamoyl- P

HCO–
3, ATP

AS

Cit

Orn

Arg

urea

Asp
oxaloacetate

malate

fumarate

amino acid α-keto acid

α-KG Glu

transaminases

glutamate dehydrogenase

urea cycle

TCA cycle

malate aspartate shuttle
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The urea cycle spans mitochondria and cytosol

mitochondria cytosol

citrulline

ornithine

H+ H+

citrulline
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argininosuccinate

arginine

carbamoyl-
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NH3 + HCO–
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ATP AMP
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The glucose-alanine cycle
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Nitrogen transport by glutamine
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The central role of glutamate in nitrogen disposal
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Control of ammonia levels in the liver lobule

blood from portal vein

blood from liver artery

blood to systemic circulation

glutamate dehydrogenase,

glutaminase: NH3

urea cycle runs at speed

glutamine synthetase: NH3

before blood leaves liver

liver tissue
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Regulation of the urea cycle

glutamine
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Hereditary enzyme defects in the urea cycle

◮ may affect any of the enzymes in the cycle

◮ urea cannot be synthesized, nitrogen disposal is disrupted

◮ ammonia accumulates, as do other metabolites depending on the deficient

enzyme

◮ treatment

◮ protein-limited diet
◮ arginine substitution
◮ alternate pathway therapy

glutamine conjugation
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Asparagine degradation
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Serine dehydratase
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Serine-pyruvate transaminase
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Degradation of leucine
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Degradation of phenylalanine and tyrosine
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Phenylketonuria (PKU)

◮ homozygous defect of phenylalanine hydroxylase

◮ affects one in 10,000 newborns among Caucasians; frequency differs with race

◮ excess of phenylalanine causes symptoms only after birth; intrauterine

development normal

◮ cognitive and neurological deficits, probably due to cerebral serotonin deficit

◮ treatment with phenylalanine-restricted diet

◮ some cases are due to reduced affinity of enzyme for cofactor THB, can be

treated with high dosages of THB
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The Guthrie test for diagnosing phenylketonuria

Grow E. coli Phe– on

rich medium

Spread on minimal

medium

Cells persist, but do

not grow

Place patients’ blood sam-

ples onto inoculated agar—

bacteria will grow around

samples containing excess

phenylalanine
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Ochratoxin A inhibits phenylalanyl-tRNA synthetase
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Tyrosinemia

◮ homozygous defect of fumarylacetoacetate hydrolase

◮ fumarylacetoacetate and preceding metabolites back up

◮ fumaryl- and maleylacetoacetate react with glutathione and other nucleophiles,

causing liver toxicity

◮ the drug NTCB inhibits p-hydroxyphenylpyruvate dioxygenase, intercepting the

degradative pathway upstream of the toxic metabolites

◮ dietary restriction of tyrosine required to prevent neurological deficit

Phe degradation
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Chapter 13

Hormonal regulation of metabolism
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Hormones that affect energy metabolism

Hormone Message

insulin glucose and amino acids available, more sub-

strates on the way

glucagon glucose and amino acids in short supply,

need to mobilize internal reserves

epinephrine prepare for imminent sharp rise in substrate

demand

glucocorticoids prepare for extended period of high demand

thyroid hormones increase basal metabolic rate
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Langerhans’ islets in the pancreas produce insulin and glucagon
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A little bit of history: The purification of insulin—the problem
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The purification of insulin—Banting’s solution

apply ligature,
reseal abdomen

pancreatic juice backs
up, exocrine tissue
self-destroys

obtain protease-free
homogenized extract
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Historical side note: Norman Bethune, Banting’s famous

classmate

“Comrade Bethune’s spirit, his utter devotion to others without any thought of self, was

shown in his great sense of responsibility in his work and his great warmheartedness

towards all comrades and the people. Every Communist must learn from him.”

Mao Zedong, “In Memory of Norman Bethune”
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Structure of insulin and its precursors (1)
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Structure of insulin and its precursors (2)

preproinsulin proinsulin C peptide insulin
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Sequences of human, swine, and bovine insulins

GIVEQCC

CLHQNVF GSHLVEALYLVCGERGFFYTPKT

TSICSLYQLENYCN

GIVEQCC

CLHQNVF GSHLVEALYLVCGERGFFYTPKA

TSICSLYQLENYCN

GIVEQCC

CLHQNVF GSHLVEALYLVCGERGFFYTPKA

ASVCSLYQLENYCN
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Insulin secretion in the β-cell is controlled by glucose and

triggered by membrane depolarization

H2O, CO2
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The sulfonylurea receptor controls an associated potassium

channel
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KATP channels also regulate the tone of smooth muscle cells
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Tolbutamide promotes closing of the KATP channel
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The insulin receptor is a receptor tyrosine kinase
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Insulin receptor first phosphorylates itself and then a number of

insulin receptor substrate proteins
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Insulin effects on glycogen synthesis

PDE
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The role of insulin in glucose transport

Active transport Facilitated transport

insulin-

independent

small intestine,

kidney tubules

brain, β-cells, red blood cells,

cornea and lens of the eye

insulin-

dependent

never muscle, fat, most other tis-

sues
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Insulin promotes glucose uptake by increasing the surface

exposure of GLUT 4 transporters

Glc

Glc

high insulin low insulin
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Transcriptional regulation by insulin
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Other hormones

Epinephrine Cortisol Triiodothyronine

HO

OH

OH

NH

O

O

OH

OH
OH

I

OOH

NH2

I

O I

OH

Glucagon

N′ C′H S Q G T F T S D Y S K Y L D S R R A Q D F V Q W L M N T

318 / 575



Glucagon and epinephrine act via G-protein-coupled receptors
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The glucagon and epinephrine receptors activate adenylate

cyclase and protein kinase A
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Metabolic effects of protein kinase A

Target Effect Metabolic consequence

glycogen synthase glucose is not locked up in glyco-

gen, remains available

phosphorylase kinase phosphorylase is activated, glucose

is released from glycogen storage

PFK-2 / Fructose-2,6-

bisphosphatase
/ Fructose-2,6-bisphosphate drops;

glycolysis is inhibited, gluconeoge-

nesis is activated

hormone-sensitive

lipase

fatty acids are mobilized for β-

oxidation and ketogenesis
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Glucocorticoids and thyroid hormones act on nuclear hormone

receptors to activate transcription

enzymes,

receptors,

transporters

nuclear hormone

receptor
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DNA binding by thyroid hormone receptors
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Thyroid hormones induce respiratory chain uncoupling proteins
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Metabolic effects of glucocorticoid hormones

◮ induction of enzymes for glycogen synthesis, glycogen breakdown, as well as

gluconeogenesis

◮ induction of enzymes for protein breakdown, which supplies substrates for

gluconeogenesis

◮ induction of adrenergic receptors

. . . overall, glucocorticoids increase blood glucose
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Glucocorticoid receptor agonists and antagonists
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Control of food intake by leptin
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Chapter 14

Diabetes mellitus
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Diabetes mellitus

What’s in a name?

1. diabetes: “marching through”—urine is produced incessantly

2. mellitus: honey-sweet—as opposed to diabetes insipidus (insipid—without

flavor)

What does the adjective tell us about a traditional method of diagnosis?
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Forms and causes of diabetes mellitus

Form Cause

type 1 lack of insulin due to destruction of β-cells

in pancreas islets

type 2 lack of functional response to insulin

secondary excess activity of hormones antagonistic to

insulin
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Overview of kidney function

Urine is “distilled” from blood plasma in several stages:

1. ultrafiltration: 10-20% of the blood plasma volume that passes through the

kidneys is squeezed across a molecular sieve; small solutes are filtrated,

macromolecules are retained

2. solute reuptake: glucose, amino acids, salts etc. are recovered from the

ultrafiltrate through active transport

3. water reuptake: driven by osmotic gradient

4. solute secretion: some substrates are actively secreted into the nascent urine
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The nephron

Macula densa

Glomerulus

Proximal
tubule

Distal
tubule

Loop of Henle

Collecting duct

332 / 575



Kidney tissue structure and function: Glomeruli and tubules

From pathorama.ch with permission
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Primary filtration occurs in the glomerulus
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Reuptake and secretion occur in the tubular segments
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The capacity for glucose reuptake is saturated slightly above the

physiological plasma concentration range

Reabsorption
maximum (~10 mM)

normal
range
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Lack of insulin drives up cAMP

glucacon

glucagon receptor

epinephrine

β-adrenergic receptor

adenylate cyclase

ATP cAMP

phosphodiesterase

AMP

insulin

insulin receptor

protein kinase B
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Lack of insulin promotes gluconeogenesis

Epinephrine, glucagon Insulin

Adenylate cyclase Phosphodiesterase

ATP cAMP AMP

Protein kinase A

PFK 2/F-2,6-bis-P’ase PFK 2/F-2,6-bis-P’ase

Fructose-2,6-bis- P

Fructose-6- P

338 / 575



Lack of insulin promotes gluconeogenesis (2)

Fructose-6- P

ATP

AMP

Fructose-2,6-bis- P

Fructose-1,6-bis- P

Pi

H2O

ATP

ADP

Phosphofructokinase
Fructose-1,6-
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Lack of insulin induces breakdown and inhibits synthesis of

glycogen

Epinephrine, glucagon Insulin

Adenylate cyclase Phosphodiesterase

ATP cAMP AMP

Protein kinase A

Glycogen
synthase

Glycogen

synthase- P

Phosphorylase
kinase

Phosphorylase

kinase- P

Phosphorylase Phosphorylase- P
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Lack of insulin induces triacylglycerol breakdown in fat tissue

epinephrine, glucagon insulin

adenylate cyclase phosphodiesterase

ATP cAMP AMP

protein kinase A

hormone-sensitive lipase

triacylglycerol
fatty acids,
glycerol
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Lack of insulin induces protein breakdown in muscle tissue

protein

amino acids keto acids

α-ketoglutarate

glutamate

malate

pyruvate

alanine alanine

pyruvate glucose

TCA

cycle

glutamate
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Substrate overload in the liver leads to ketogenesis and

lipoprotein synthesis

glucose fatty acidsamino acids

amino acidsglucose pyruvate

acetyl-CoA

cholesterol

fatty acids

triacylglycerol

lipoproteins

lipoproteins

ketone bodies

ketone bodies
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Laboratory findings in untreated or under-treated diabetes

Observation Cause

increased blood glucose excessive gluconeogenesis, lack of utilization

glucose excreted in

urine

capacity for renal reuptake exceeded

acidosis (low blood pH) high plasma levels of ketone bodies

increased urea levels accelerated muscle protein breakdown

increased blood

lipoproteins

increased synthesis and packaging of chol-

esterol and triacylglycerol in the liver
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Typical symptoms and history in a new case of type 1 diabetes

Symptom Cause

dehydration osmotic diuresis due to glucose excretion

acetone smell acetone forms from acetoacetate, is ex-

haled

coma both acidosis and blood hyperosmolarity

impair brain function

loss of body weight dehydration, breakdown of proteins and

fat

recent flu-like disease,

possibly myocarditis

coxsackievirus infection
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The role of coxsackieviruses in the pathogenesis of type 1

diabetes
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Outline of T lymphocyte function in antiviral immune responses
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Structure of a T cell receptor bound to its cognate peptide

presented by an HLA molecule

presented peptide

T cell receptor

HLA molecule

HLA residues that

interact with the

T cell receptor
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HLA alleles influence the risk of developing type 1 diabetes

HLA-DQ Haplotype Relative risk Absolute risk

A1: 0301-0302 / B1: 0501-0201 21 6%

B1: 0602 0.03 0.01%
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How to treat a fresh case of acute diabetes

1. Severely sick, possibly comatose patient

◮ infusion therapy for fluid replacement, pH and electrolyte adjustment
◮ parenteral nutrition with proportional insulin substitution
◮ frequent monitoring of lab parameters (glucose, salts, pH) to adjust therapy

2. Upon stabilization

◮ reversal to oral nutrition
◮ train patient to adhere to a stable, regular diet and inject themselves with

insulin
◮ teach patient to monitor blood glucose and to recognize symptoms of

hyper- and hypoglycemia
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Kinetics of physiological insulin secretion

time
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The reversible aggregation of insulin delays its diffusion from

tissue into the circulation

Capillary wall

Hexamer Dimer Monomer
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Delayed release of insulin from protamine complexes

protamine MARYRCCRSQSRSRYYRQRQRSRRRRRRSCQTRRRAMRCCRPRYRPRCRRH
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Biphasic insulin preparations
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time

short-acting

long-acting

combination
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Short-term complications of insulin-requiring diabetes

Deviation Symptoms

insulin too low hyperglycemia, acidosis, . . . , coma

insulin too high hypoglycemia, coma
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Long-term complications of insulin-requiring diabetes

Biochemical deviation Clinical manifestation

accumulation of sorbitol in the

lens of the eye

cataract polyol pathway

increased conversion of glucose

to lipids

increased blood fats, atherosclero-

sis

glucosylation of proteins? sor-

bitol accumulation?

damage to nerve fibres, kidneys,

other organs
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HbA1C as a parameter of long-term glucose control
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Intensive insulin therapy

◮ rationale: prevent long term complications through tight control of blood

glucose

◮ means: frequent glucose sampling and injections, or continuous insulin

application with pump, such that the rate of insulin infusion is controlled by

the current glucose level

◮ challenge: avoid hypoglycemia through insulin overdose—we need to minimize

the delay between insulin application and effect
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Nerdy intermission: delayed feedback causes signal oscillation

S
ig

n
a
l

Time

delayed reaction

immediate reaction
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Mutant insulins optimized for rapid dissociation and uptake

◮ Insulin lispro: Proline B28 switched with lysine B29

◮ Insulin aspart: Proline B28 replaced with aspartate
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Structural basis for proline B28 mutations

Dimer 1

Dimer 2 Dimer 3

Gly B23

Glu B21

Pro B28
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Oral antidiabetic drugs
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Action modes of oral antidiabetics

Drug Action mechanism

tolbutamide sulfonylurea receptor agonist

rosiglitazone peroxisome proliferator-activated receptor γ ag-

onist; inhibition of mitochondrial pyruvate trans-

port

acarbose inhibition of the brush border enzymes sucrase

and maltase—reduced or delayed glucose uptake

tolrestat aldose reductase inhibitor (withdrawn)

metformin NADH dehydrogenase inhibition ?
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Hypothetical mode of action of metformin
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Inhibition of complex I of the respiratory chain by metformin
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Chapter 15

Biosynthetic pathways using tetrahydrofolate and

vitamin B12
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The role of tetrahydrofolate in biosynthetic reactions

amino acids2 urea, H2O, CO2

THF THF−C1

Cn+1 products Cn precursors

carbon sources

C1–tetrahydrofolate pool

biosynthetic pathways
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Folic acid is reduced by dihydrofolate reductase (DHFR)
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Sources and destinations of C1 units transferred by

tetrahydrofolic acid

Sources:

1. serine, glycine

2. histidine, tryptophan

Biosynthetic destinations:

1. purine bases

2. thymine

3. S-adenosylmethionine choline phospholipids, creatine, epinephrine, DNA

methylation
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The serine hydroxymethyltransferase reaction: release of CH2O
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Capture of formaldehyde by THF yields N,N′-methylene-THF
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N,N′-methylene-THF production by the glycine cleavage system
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Histidine degradation produces N,N′-methenyl-THF

N,N′-methenyl-THF
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Redox transitions between various forms of C1-THF
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Overview of flux through the C1-THF pool

tryptophan

formic acid

N10-formyl-THF

purine bases
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Folate antimetabolites as antibacterial and antiprotozoal agents
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Structure of methylcobalamin
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The S-adenosylmethionine (SAM) cycle requires vitamin B12

THF−CH3

THF

B12

B12−CH3

homocysteine

ymethionine S-adenosylmethionine (SAM)

S-adenosylhomocysteine (SAH)

ATPi 3 Pi

H2Oadenosine

precursor

methylated product
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Structures of S-adenosylmethionine and S-adenosylhomocysteine
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SAM-dependent methylation reactions

1. methylation of phosphatidylethanolamine (PE) to phosphatidylcholine (PC)

2. guanidinoacetate creatine

3. norepinephrine epinephrine

4. acetylserotonin melatonin

5. DNA methylation

6. methylation of drugs (e.g. mercaptopurine)
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Phosphatidylethanolamine methylation
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Sphingomyelin acquires its phosphocholine headgroup from PC
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Major nerve fibers are myelinated
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Creatine metabolism
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Uptake, transport and storage of folic acid

◮ contained in vegetables (Latin folium = leaf)

◮ synthesized by bacterial flora in the large intestine

◮ active transport mediates intestinal uptake and renal reuptake, as well as

accumulation in the liver

◮ 50% of all folate is stored in the liver
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Causes of folate deficiency

◮ malnutrition

◮ inflammatory bowel diseases

◮ surgical bowel resection (short intestine syndrome)

◮ cytochrome P450-inducing drugs

◮ excessive alcohol consumption—contentious
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Folate deficiency causes macrocytic anemia

normal red cells macrocytic red cells

C1-pool
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Intestinal uptake of vitamin B12
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Various causes of B12 deficiency

Disease Pathogenetic mechanism

autoimmune

gastritis

destruction of the gastric parietal cells that pro-

duce gastric acid, haptocorrin, and intrinsic factor

pancreatic

insufficiency

failure to digest haptocorrin

inflammatory

bowel disease

disrupted uptake of B12 bound to intrinsic factor

receptor

deficiencies

disrupted binding and cellular uptake of intrinsic

factor or transcobalamin

C1 pool
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Vitamin B12 deficiency causes disruption of folate-dependent

metabolism: the methyl trap ‘hypothesis’

formyl-THF

methenyl-THF methylene-THF methyl-THF

methionine

S-adenosyl-methioninepurine synthesis thymidine synthesis

histidine serine

B12
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Chapter 16

Nucleotide metabolism
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Functions of nucleotides in biochemistry

◮ Building blocks of nucleic acids

◮ Cosubstrates and coenzymes

◮ Signaling
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Structures of PAPS, acetyl-CoA, and NAD
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The RNA world hypothesis
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Why have cosubstrates become fossilized, whereas enzymes have

not?

Me substrate 1

cosubstrate

substrate 2

Me enzyme 4

enzyme 3

enzyme 2
enzyme 1

. . .

. . .

. . .

. . .

. . .
. . .

. . .

. . .

An enzyme’s world . . .

. . . and a cosubstrate’s world
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Metabolic routes and pathways of nucleotides

◮ De novo synthesis

◮ Intestinal uptake of nucleosides

◮ Endogenous turnover (partial degradation/salvage)

◮ Degradation and excretion
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Overview of purine synthesis
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IMP synthesis (1)

ribose-5-phosphate PRPP
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IMP synthesis (2)
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IMP synthesis (3)
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A bifunctional enzyme combines AIR carboxylase and SAICAR

synthetase activities

substrate substrate

product
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Synthesis of AMP from IMP
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Synthesis of GMP from IMP
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Feedback regulation in purine synthesis

Ribose-5-phosphate

PRPP
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Overview of digestion and utilization of nucleic acids

nucleic acids

nucleotides

nucleosides

nucleosides nucleotides

sugar phosphates bases

CO2 and H2O uric acid, β-amino acids

nucleotides

degradation
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Utilization of ribose and deoxyribose
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Degradation of endogenous purine nucleotides (overview)

GMPXMPIMPAMP

guanosinexanthosineinosineadenosine

guaninexanthinehypoxanthineadenine
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Adenine nucleotide degradation
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The guanase and xanthine dehydrogenase/oxidase reactions
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Renal urate elimination: tubular reuptake and secretion

urate

organic acid
URAT1

urate
MRP4

urate

organic acid
?

urate
ATP?

Interstitial fluid /

blood plasma

Tubule epithelial cell Tubule lumen

(nascent urine)
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Non-primates break down uric acid to allantoin
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Overview of purine salvage reactions

GMPXMPIMPAMP

adenylo-
succinate

GuanosineXanthosineInosineAdenosine

GuanineXanthineHypoxanthineAdenine

Uric acid
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4 55

nucleoside kinases

phosphoribosyltransferases

shared with biosynthesis
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Enzyme defects in purine degradation and salvage

Enzyme Biochemical effects Clinical symptoms

adenosine

deaminase

accumulation of dA

and dATP

severe combined im-

munodeficiency (SCID)

HGPRT defective purine sal-

vage, increased de

novo synthesis and

degradation

gout; impeded cerebral

development and self-

mutilation (Lesch-Nyhan

syndrome)

ADA deficiency
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Gout

◮ Genetic or dietary factors cause chronically increased urate production or

retention

◮ Urate has limited solubility and may form crystalline deposits, preferentially in

joints and soft tissue

◮ Urate crystals activate inflammation and lead to arthritis that is painful and, in

the long run, destructive
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Diets and drugs that may promote gout

◮ too much food, too rich in purines

◮ excessive fructose or sucrose

◮ alcoholic beverages—but not all kinds: beer yes, wine no

◮ anorexia nervosa (!)

◮ drugs that interfere with uric acid secretion: pyrazinamide, salicylic acid

◮ drugs that contain purines: dideoxyadenosine

renal urate elimination
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Gout: the fructose connection

fructose fructose-1- P glyceraldehyde

ATP ADP

dihydroxyacetone- P

glyceraldehyde-3- P
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NADH+H+ NAD+adenylate
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purine
degradation

1/2 urate
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Drugs that affect purine degradation and elimination
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Acute urate nephropathy in tumor lysis syndrome

◮ Occurs during chemotherapy of malignancies, particularly with lymphomas and

leukemias

◮ Chemotherapy causes acute decay of large numbers of tumor cells

◮ Degradation of nucleic acids from decaying cells produces large amounts of

uric acid

◮ Uric acid in nascent urine exceeds solubility and precipitates, clogging up and

damaging the kidney tubules

◮ Clinically manifest as acute kidney failure with high fatality rate
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Rasburicase, a better preventive treatment for urate nephropathy

Adenine Hypoxanthine

Guanine Xanthine

Uric acid

Allantoin

Urine

Allopurinol

Rasburicase

419 / 575



Synthesis of pyrimidines (1)
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Synthesis of pyrimidines (2)
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Degradation of pyrimidines

UMP uridine

CMP cytidine
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β-Alanine may be used to synthesize carnosine
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Synthesis of deoxyribonucleotides

DNA polymerases
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The thymidylate synthase reaction
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Nucleotide antimetabolites as anticancer and antiviral drugs

Therapeutic principle Examples

direct inhibition of DNA/RNA

polymerization

dideoxyadenosine, cytosine

arabinoside, acyclovir

inhibition of nucleotide

synthesis

mercaptopurine, fluorouracil,

methotrexate

Incorporation of mutagenic

analogues into DNA

idoxuridine
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Dual action mode of 5-fluorouracil

Thymidylate
synthase

Mutagenesis

O N

O

N

O N

F

O

N

O N

CH3

O

N

Uridine

dUMP

dTMP

5-F-Uridine

5-F-dUMP

5-F-d-Uridine

5-F-dUTP

5-F-dUDP

d-Thymidine

dTTP

DNA

427 / 575



Inhibition of thymidylate synthase by 5-fluorouracil
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Mutagenesis through mispairing of the 5-FU iminol tautomer
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Thymine and various halogen analogues

thymine fluorouracil bromouracil iodouracil

Utilization of dietary nucleic acids

430 / 575



Indirect inhibition of thymidine synthesis by methotrexate
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Mercaptopurine inhibits purine synthesis
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Structure of cytosine arabinoside (araC) and gemcitabine
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Metabolic activation and inactivation of araC

araCaraU

araUMP araCMP araCTP

ENTMDR

dC deaminase

dCMP deaminase dNMP, dNDP kinases

dC kinase5 ′-nucleotidase
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Overexpression of 5′-nucleotidase in leukemic cells shortens

survival
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Action mode of araCTP
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Dideoxyadenosine inhibits retroviral DNA polymerase

2,3-dideoxy-adenosine (ddA)DNA
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Aciclovir and ganciclovir
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Aciclovir: mode of action on herpes virus
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Some more inhibitors of viral nucleic acid synthesis
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Chapter 17

Iron and heme metabolism
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Iron and heme metabolism
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Functions of heme

Redox chemistry

◮ electron transport: cytochromes in the respiratory chain

◮ enzyme catalysis: cytochrome P450, cyclooxygenase, others

Reversible binding of gases

◮ O2: hemoglobin and myoglobin (80–90% of all heme)

◮ NO: guanylate cyclase
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Heme in cytochrome C oxidase
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Heme synthesis (overview)

mitochondria cytosol

8 succinyl-CoA + 8 glycine
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The δ-aminolevulinate synthase reaction
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The porphobilinogen synthase reaction
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A substrate analogue next to zinc inside the active site of

porphobilinogen synthase

HO

O

NH2

NH2

OOH

448 / 575



Porphobilinogen deaminase synthesizes hydroxymethylbilane

hydroxymethylbilane

Enzyme-SH

NH3

Enzyme S

Ac P

N
H

H2N

Ac P

N
H

NH3

H2N

Ac P

N
H

Enzyme S

Ac P

N
H

Ac P

N
H

4 NH3

H2N4

Ac P

N
H

Enzyme S

Ac P

N
H

Ac P

N
H

Ac P

N
H

Ac P

N
H

Ac P

N
H

Ac P

N
H

H2O

HO

Ac P

N
H

Ac P

N
H

Ac P

N
H

Ac P

N
H

449 / 575



Synthesis of uro- and coproporphyrinogen III
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Final steps in heme synthesis
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Disruptions of heme synthesis

◮ iron depletion

◮ hereditary enzyme defects (porphyrias)

◮ vitamin B6 deficiency—inhibition of aminolevulinate synthase

◮ lead poisoning—inhibition of porphobilinogen synthase
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Disruption of heme synthesis causes microcytic, hypochromic

anemia

Normal red blood cells Microcytic anemia
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Porphyria cutanea tarda (PCT) is caused by uroporphyrinogen

decarboxylase deficiency
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Laboratory and clinical findings in PCT
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Causation of porphyria cutanea tarda

◮ hereditary—rare, autosomal dominant; enzyme defect is manifest in all tissues

◮ sporadic—exogenous, or related to a genetic defect in iron uptake regulation

◮ caused by alcohol, halogenated hydrocarbons, other toxic substances
◮ enzyme activity lacking in the liver but not erythrocytes and other

tissues—enzyme is functional but inhibited by interfering metabolites

◮ iron overload seems important in both hereditary and sporadic forms
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A defect of ferrochelatase causes erythropoietic protoporphyria
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Acute intermittent porphyria (AIP)

◮ deficiency of porphobilinogen deaminase, autosomal dominant

◮ excessive synthesis of δ-ALA in liver

◮ surplus porphobilinogen in urine—urine is colored red

◮ δ-ALA inhibits the GABAA receptor, causing

◮ psychiatric symptoms (‘organic psychosis’)—too often misdiagnosed and

mistreated
◮ abdominal pain (neuropathic)

◮ episodes can be induced by drugs

heme synthesis CYP induction
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Heme degradation
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Jaundice

Accumulation of bilirubin in the body. Causes:

◮ increased production: hemolytic anemia (premature decay of red blood cells)

◮ decreased conjugation: enzyme defect, liver disease

◮ decreased excretion of conjugated heme: deficiency of ABCC2 transporter

(Dubin-Johnson syndrome)

◮ mechanically blocked excretion: bile duct blocked by bile stone or tumor
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Enzyme defects in bilirubin conjugation by

UDP-glucuronosyltransferase

◮ transient, usually mild: neonatal jaundice

◮ genetic, mild: Gilbert syndrome—asymptomatic jaundice

◮ genetic, severe, rare: Crigler-Najjar syndrome
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Bilirubin encephalopathy (“kernicterus”)
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Photoisomerization products of bilirubin

O

NH

OOH

N
H

N
H

O OH

NH

O

N
H

O N
H

OOH

N
H

O OH

NH

O

O

NH

OOH

N
H

N
H

O OH

N
H

O

OOH

N
H

O

N

N
H

O OH

NH

O

4Z,15Z

4Z,15E

4E,15Z

15Z-lumirubin

463 / 575



Wavelength dependence of lumirubin formation
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DNA strand breaks induced by bilirubin photo-activation

(determined with Hoechst 32258)
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Sn-mesoporphyrin, an inhibitor of heme oxygenase
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Long-term phototherapy of Crigler-Najjar syndrome
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Cholestyramine particles absorb lumirubin
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Is CO a signaling molecule, like NO?

heme degradation
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Iron uptake, transport and storage

◮ uptake in the small intestine: Fe2+—free or bound to heme

◮ transient storage as ferritin inside the intestinal epithelia

◮ transport in the blood: Fe3+—bound to transferrin with very high affinity

◮ cellular uptake: endocytosis of transferrin, release of iron in acidic endosome

◮ storage: intracellular ferritin particles

◮ depletion: scaled-off cells, blood loss, breast milk
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Structure of ferritin
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Ferritin in the small intestine regulates iron uptake
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Hemosiderin in liver tissue
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Chapter 18

Metabolism of reactive species
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The nature of “reactive species”

◮ Many RS are radicals (OH•, O2
• – ), but some aren’t (H2O2, HOCl, singlet oxygen)

◮ RS are classified according to elemental composition, with some overlap—e.g.
•NO is both a ‘reactive oxygen species’ (ROS) and a ‘reactive nitrogen species’

(RNS)

◮ While most RS do contain oxygen and can thus be subsumed as ROS, there are

exceptions such as thiyl radicals (R – S•) and chloramines (R – HN – Cl)
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Reactive species in the human body: examples

Reactive species Origin Function or effect

O2
• – respiratory chain byproduct

•OH ionizing radiation;

Fenton reaction

DNA damage, lipid peroxida-

tion (cell membranes, LDL)

H2O2 phagocytes killing of microbes

thyroid peroxidase reaction intermediate

superoxide dismutase detoxification intermediate

HOONO phagocytes killing of microbes

singlet oxygen photosensitization

in porphyrias

skin damage

N-acetyl-p-quinone-

imine (NAPQI)

metabolite of

acetaminophen

drug toxicity

R – S• secondary radical detoxification intermediate
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Do reactive species really matter in a class on metabolism?

◮ Reactive species are intermediates or byproducts of metabolic reactions

◮ Reactive species create ‘cross-talk’ between pathways—e.g., uric acid may

scavenge reactive species produced in the respiratory chain

◮ Reactive species participate in the development of atherosclerosis and other

metabolic diseases

◮ Metabolites and enzymes that scavenge radicals are highly abundant—e.g.

glutathione (7-8 mM in liver cells), peroxiredoxins (1% of cellular protein)
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Reactive species and ionizing radiation
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How toxic are •OH radicals?

◮ The LD50 of γ-radiation is 5 Gray (Gy) = 5 J/kg

◮ The main effect of γ-rays is to break up H2O into H+, e – , and •OH

◮ The bond dissociation energy for the first bond in water is 500 kJ/mol, and that

for ionizing the resulting hydrogen atom is 218 kJ/mol

◮ ⇒ at most 7 µmol/kg of •OH is produced by one LD50 of γ-rays
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Reactions of radicals with each other and with non-radicals
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The reaction of H2O2 with thiol groups
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Radical reactions with transition metals

superoxide dismutase
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Fenton-like radical formation by transition metals
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Diffusion distances of selected reactive species
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Example bimolecular reaction rate constants

➲OH glutathione

methionine

guanine

O ➲ –
2 glutathione

NADH

HO ➲

2 NADH

H2O2 glutathione

Cdc25B

peroxiredoxin 2

100 102 104 106 108 1010

Bimolecular reaction rate (M-1s-1)
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The active site of the protein tyrosine phosphatase Cdc25B
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Standard redox potentials of selected radicals

Oxidised form Reduced form ∆E0′ (V)

•OH + H+
+e− H2O 2.31

R – O• + H+
+e− R – OH 1.60

HO – O• + H+
+e− H2O2 1.06

R – O – O• + H+
+e− R – O – OH 1.00

R – S• +e− R – S – 0.92

H2C –– CH – CH• – CH –– CH2 + H+
+e− H2C –– CH – CH2 – CH –– CH2 0.60

ascorbyl• – + H+
+e− ascorbate – 0.28

Fe+++
+e− Fe++ 0.11

dehydroascorbate +e− ascorbyl• –
−0.17

O2 +e− O2
• –

−0.33

R – SS – R +e− R – SS• –– R −1.50

(water) +e− e− (solvated) −2.87
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Some radicals are stabilized by resonance
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NADPH oxidase initiates ROS formation in phagocytes
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O2
• – gives rise to other reactive oxygen species

O2

O2
• –HO2

•

H2O2 HOCl OH •

arginine

•NO

HOONO NO2
•

NADPH + H+

NADP+

NADPH
oxidase

H+

H+

O2 Myelo-
peroxidase

Cl – OH –

iNOS

H+

O2 + Cl –

490 / 575



Lessons from ROS generation in phagocytes

◮ ROS are produced in large amounts for killing microbes, even though they will

also damage host cells

◮ ROS generation starts with reducing power, and often (as in this case) with

enzymatic reactions

◮ Once primary RS have been generated—here, O2
• – and •NO—they tend to

spontaneously generate secondary ones

◮ pH matters—the weakly acidic endosomal pH seems optimized for generating

peroxynitrite and HO2
•
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Production of reactive oxygen species in mitochondrial

respiration

coenzyme Q
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Mitochondrial energy state and ROS formation

◮ When ATP consumption is low, proton and electron transport chain back up

◮ Backed-up electrons will leak and produce more O2
• –

◮ O2
• – activates uncoupling proteins, which will lower the proton-motive force

and the ATP yield, but increase electron transport

◮ Increased O2
• – formation has been observed in pancreatic β-cells in type 2

diabetes
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Hydroxyl radicals can modify DNA bases
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Hydroxyl radicals can break DNA strands
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Protein modification by reactive oxygen species
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Self-sustained lipid peroxidation induced by peroxyl radicals
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Toxic products of lipid peroxidation: hydroxynonenal
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Hydroxynonenal cytotoxicity in cell culture
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Toxic products of lipid peroxidation: malondialdehyde
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Formation of nucleobase adducts by hydroxynonenal and

malondialdehyde

malondialdehyde
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Detection of malondialdehyde with thiobarbituric acid
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Formation of inflammatory mediators by enzymatic lipid

peroxidation
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Lipoxygenases use iron to abstract H• from the substrate
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A tyrosyl radical initiates the cyclooxygenase reaction
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Photoactivated generation of singlet oxygen by porphyrins
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Singlet oxygen reacts readily with non-radicals
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Singlet oxygen and transition metals in photoactivated lipid

peroxidation
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UV-induced lipid peroxidation and membrane damage in

erythropoietic protoporphyria
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Protective mechanisms and molecules

◮ Metal sequestration (Fe, Cu)

◮ Enzymes

◮ Superoxide dismutase
◮ Catalase
◮ Glutathione peroxidase family
◮ Peroxiredoxins, glutaredoxins, thioredoxins

◮ Small molecules

◮ Endogenous: glutathione, uric acid, bilirubin, coenzyme Q
◮ Exogenous: ascorbic acid, vitamin E
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Iron chelation by heme and by transferrin

Heme Transferrin
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Metallothioneins sequester copper and other heavy metals
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Superoxide dismutases contain transition metals

Mn - SOD

Cu, Zn - SOD

Meox Mered

O2
• –

O2

2 H
+

+ O2
• –H2O2

Haber-Weiss
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Structure of mitochondrial peroxiredoxin 3
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Other enzymes that carry out thiol/disulfide chemistry

Enzymes Properties and functions

Glutathione

peroxidases

contain selenocysteine in the active site; reduce organic

peroxides

Thioredoxins reduce protein disulfides, including peroxiredoxins

Thioredoxin

reductase

reduces thioredoxin reductase using NADPH

Glutaredoxins reduce protein/GSH mixed disulfides (P – SS – G) and

dehydroascorbic acid

Thiol-disulfide

isomerases

reside inside the ER; facilitate protein folding by resolving

aberrant protein disulfides
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Detoxification of mitochondrial superoxide
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Scavenging of organic peroxides by glutathione peroxidase
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Ascorbic acid (vitamin C) is a major radical scavenger
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The energetics of ascorbyl disproportionation

Oxidised form Reduced form ∆E0′ (V)

ascorbyl• –
−e− dehydroascorbate 0.174

ascorbyl• – + H+
+e− ascorbate – 0.282

2 ascorbyl• – + H+ ascorbate – + dehydroascorbate 0.454
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Uric acid as a radical scavenger and antioxidant
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α-Tocopherol intercepts lipid peroxidation
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Extracellular antioxidants

◮ Small molecules: ascorbate, urate, glutathione

◮ Albumin

◮ Peroxiredoxin 4

◮ Selenoprotein P
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Regeneration of α-tocopherol by ubiquinol
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Regeneration of extracellular ascorbate and urate
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Chapter 19

Metabolism of drugs and xenobiotics
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Metabolism of drugs and xenobiotics

Functional significance:

◮ inactivation and facilitated elimination of drugs and xenobiotics

◮ activation of prodrugs

◮ formation of active metabolites with similar or novel activity

◮ detoxification of toxic xenobiotics

◮ toxification of non-toxic xenobiotics
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Enzyme specificity in drug metabolism

◮ key problem: a limited number of enzymes must cope with an unlimited

number of substrates

◮ many drug-metabolizing enzymes have fairly broad specificities

◮ enzyme specificities overlap—many drugs give rise to multiple metabolites
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Example: metabolism of phenobarbital
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Drug metabolism facilitates drug elimination

Drug molecule

Reactive metabolite Conjugate

Urine

phase 1

phase 2

Deconjugation,

reuptake
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Mode of action of cytochrome P450 enzymes

ER membrane
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Reactions catalyzed by cytochrome P450
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Transcriptional induction of CYP450 3A4

Cytochrome P450,

phase II enzymes,

ABC transporters

PXR
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Structure of erythromycin bound to cytochrome P450 3A4
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Ketoconazole bound to cytochrome P450 3A4
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Superposition of the erythromycin- and the ketoconazole-bound

structures
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Examples of active metabolites formed by CYP450 enzymes
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Benzopyrene as an example of harmful metabolism of xenobiotics
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Summary of phase II reactions

Enzymes Cosubstrates Functional groups

UDP-glucuronosyl-

transferases

UDP-glucuronide – OH, – NH2

sulfotransferases PAPS – OH, – NH2

glutathione-S-transferases glutathione epoxy groups,

double bonds

acetyltransferases acetyl-CoA – OH, – NH2

methyltransferases SAM – OH, – NH2, – SH

epoxide hydrolase H2O epoxide groups

aminoacyltransferases amino acids – COOH
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Detoxification of benzopyrene epoxide derivatives by epoxide

hydrolase or glutathione-S-transferase
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Metabolism of acetaminophen
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Morphine skips phase I and is conjugated directly

HO O OH

N

O O OH

N

OH

OH

O−O

O

OH

UDP-glucuronide

UDP

Morphine Morphine-3-glucuronide

541 / 575



Acetylation of INH by N-acetyltransferase 2 (NAT 2)
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Bimodal distribution of INH acetylation speed
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Metabolic activation of arylamine carcinogens
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Amino acid conjugation: Glutamine conjugation of phenylacetate
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Alternate pathway therapy of urea cycle defects (1)

ornithine α-ketoglutarate aspartate
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Alternate pathway therapy of urea cycle defects (2)

glutamine N-phenylacetyl-glutamine

urineurea

phenylacetyl-CoA

phenylbutanoic acid

CoA-SH

glutamine N-phenylacetyltransferase

enzymes of β-oxidation

urea cycle defect
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Reductive drug metabolism

Multiple enzymes:

◮ methemoglobin reductase (diaphorase)

◮ cytochrome P450 reductase

◮ thioredoxin

◮ bacterial metabolism

◮ . . .

regeneration of tocopherol by ubiquinol
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DNA damage triggers programmed cell death

Growth factors, adhesion molecules Fas-ligand, TNF

Receptor tyrosine kinases, GPCRs Death receptors Cell membrane

PIP3-kinases Adapter proteins

Proliferation AKT Caspases Apoptosis

Microtubule
disruption

Bcl family Cytochrome C Mitochondria

MDM2 p53 ATM, ATR, ARF

Cell cycle arrest, DNA repair DNA damage Nucleus
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Mechlorethamine, a DNA-alkylating drug
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CB 1954, an experimental antitumor drug that is activated by

nitro group reduction and acetylation
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Canfosfamide, an antitumor drug that targets alkylant-resistant

tumor cells
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Chapter 20

Enzyme and gene therapy of enzyme defects
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Therapy of enzyme defects: general considerations

◮ How many organs are affected by the enzyme defect: One organ, a few, or all

organs?

◮ How severe is the defect?

◮ Can the defect be adequately controlled by conventional treatment?
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Conventional therapeutic strategies

◮ diets

◮ drugs

◮ organ transplants
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Therapeutic strategies based on molecular biology

Correction of . . .

◮ DNA: gene therapy

◮ mRNA: suppression of mutant stop codons with drugs

◮ protein: enzyme substitution
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Translational antitermination with PTC124 (ataluren)

Ribosomes

Nascent proteins

Regular stop codon

Functional protein

Mutant stop codon

Incomplete protein

PTC124

Functional protein
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Ataluren in cystic fibrosis
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Technical considerations for gene therapy

1. gene transfer in vivo versus in vitro

2. transfer method: viral vectors vs naked DNA

3. location of transferred gene: chromosomal versus episomal

4. expression of transferred genes: transient versus permanent

5. immune reactions to vector (particularly where repeated application is required)
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Chromosomal integration vs. episomal propagation of

transferred genes
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The life cycle of a retrovirus

viral ssRNA

viral dsDNA

viral reverse transcriptase

viral DNA integrase
host cell DNA

integrated viral DNA

viral ssRNA

host cell RNA polymerase
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An example: Adenosine deaminase deficiency
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Adenosine
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Conventional therapy of ADA deficiency: Allogenic bone marrow

transplant

◮ currently the standard treatment

◮ side effects and complications can be severe

◮ requires compatible donor
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ADA deficiency: an in vitro model of drug treatment
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Researching ADA enzyme therapy: first attempt

Adenosine Deaminase Enzyme Therapy Prevents and Reverses

the Heightened Cavernosal Relaxation in Priapism

The Journal of Sexual Medicine (2010), 7:3011-3022
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Researching ADA enzyme therapy: second attempt

Enzyme replacement therapy for adenosine deaminase

deficiency and severe combined immunodeficiency

New Engl J Med (1976) 295:1337-43

◮ strategy: application of frozen irradiated red blood cells (!)

◮ therapy improved immune status and helped patient survive for 17 months

(while waiting for blood marrow transplant)
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Gene therapy of ADA deficiency

Still at the stage of clinical studies, not mainstream. A recent study was performed

as follows:

◮ Non-myeloablative conditioning

◮ CD34+ bone marrow cells (stem cells) were isolated from the blood, transduced

in vitro with a retroviral vector carrying a functional ADA gene, and

reintroduced into the body

◮ ADA expression achieved in lymphocytes: ~5% in bone marrow, ~75% in

periphery

◮ All patients survived at time point of compilation of study (2–8 years after

treatment), but some required additional enzyme treatment

New Engl J Med (2009) 360:447-58
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Pompe disease

◮ defect of acid maltase, a lysosomal enzyme that breaks down glycogen particles

◮ lysosomal glycogen accumulates

◮ various forms: complete absence of enzyme (manifestation in infants) vs.

residual activity (manifestation in older children or adolescents)

◮ affects mainly the skeletal muscle; glycogen accumulation leads to muscle

tissue degeneration

◮ muscle strength progressively degrades, to the point that patients are no longer

able to breathe
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Enzyme therapy of Pompe disease

from Neuromuscular Disorders (2010) 20:775–782

◮ recombinant enzyme expressed in rabbit mammary glands, isolated from rabbit

milk

◮ target group: juvenile patients (not infants)

◮ dosage: 20 mg/kg every two weeks

◮ clinical outcome: improvement of muscle strength, but not to normal level

◮ no severe immune reactions
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Clinical outcome of enzyme therapy: Muscle strength
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The mannose-6-phosphate receptor targets proteins to the

lysosome

571 / 575



Optimization of acid maltase glycosylation
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The biochemical defect in Gaucher disease
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Partial deglycosylation of glucocerebrosidase accelerates uptake

into macrophages
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Drug treatment of Gaucher disease
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